PyTorch 的 10 条内部用法

alt

欢迎阅读这份有关 PyTorch 原理的简明指南[1]。无论您是初学者还是有一定经验,了解这些原则都可以让您的旅程更加顺利。让我们开始吧!

1. 张量:构建模块

PyTorch 中的张量是多维数组。它们与 NumPy 的 ndarray 类似,但可以在 GPU 上运行。

import torch

# Create a 2x3 tensor
tensor = torch.tensor([[123], [456]])
print(tensor)

2. 动态计算图

PyTorch 使用动态计算图,这意味着该图是在执行操作时即时构建的。这为在运行时修改图形提供了灵活性。

# Define two tensors
a = torch.tensor([2.], requires_grad=True)
b = torch.tensor([3.], requires_grad=True)

# Compute result
c = a * b
c.backward()

# Gradients
print(a.grad)  # Gradient w.r.t a

3.GPU加速

PyTorch 允许在 CPU 和 GPU 之间轻松切换。利用 .to(device) 获得最佳性能。

device = "cuda" if torch.cuda.is_available() else "cpu"
tensor = tensor.to(device)

4. Autograd:自动微分

PyTorch 的 autograd 为张量上的所有操作提供自动微分。设置 require_grad=True 来跟踪计算。

x = torch.tensor([2.], requires_grad=True)
y = x**2
y.backward()
print(x.grad)  # Gradient of y w.r.t x

5. 带有 nn.Module 的模块化神经网络

PyTorch 提供 nn.Module 类来定义神经网络架构。通过子类化创建自定义层。

import torch.nn as nn

class SimpleNN(nn.Module):

    def __init__(self):
        super().__init__()
        self.fc = nn.Linear(11)
        
    def forward(self, x):
        return self.fc(x)

6. 预定义层和损失函数

PyTorch 在 nn 模块中提供了各种预定义层、损失函数和优化算法。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

7. 数据集和DataLoader

为了高效的数据处理和批处理,PyTorch 提供了 Dataset 和 DataLoader 类。

from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):
    # ... (methods to define)
    
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

8.模型训练循环

通常,PyTorch 中的训练遵循以下模式:前向传递、计算损失、后向传递和参数更新。

for epoch in range(epochs):
    for data, target in data_loader:
        optimizer.zero_grad()
        output = model(data)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()

9. 模型序列化

使用 torch.save() 和 torch.load() 保存和加载模型。

# Save
torch.save(model.state_dict(), 'model_weights.pth')

# Load
model.load_state_dict(torch.load('model_weights.pth'))

10. Eager Execution and JIT

虽然 PyTorch 默认情况下以 eager 模式运行,但它为生产就绪模型提供即时 (JIT) 编译。

scripted_model = torch.jit.script(model)
scripted_model.save("model_jit.pt")

Reference

[1]

Source: https://medium.com/@kasperjuunge/10-principles-of-pytorch-bbe4bf0c42cd

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/222593.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【springboot】【easyexcel】excel文件读取

目录 pom.xmlExcelVo逐行读取并处理全部读取并处理向ExcelListener 传参 pom.xml <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version> </dependency>ExcelVo 字段映射…

基于 Webpack5 Module Federation 的业务解耦实践

前言 本文中会提到很多目前数栈中使用的特定名词&#xff0c;统一做下解释描述 dt-common&#xff1a;每个子产品都会引入的公共包(类似 NPM 包) AppMenus&#xff1a;在子产品中快速进入到其他子产品的导航栏&#xff0c;统一维护在 dt-common 中&#xff0c;子产品从 dt-com…

c/c++ | 少量内存溢出不会影响程序的正常运行

常见 通过指针 获得 字符串“aaaaaaaaaaaaaaaaaaaaaaaaaaa” 数据&#xff0c;然后通过strcpy 拷贝到对象 char str1[5] 中&#xff0c;事实是造成了内存溢出&#xff0c;但是 &#xff0c;最后 str1 打印输出的结果 是上面的 “aaaaaaaaaaaaaaaaaaaaaaaaaaa” 这是不正常的&am…

Draw.io or diagrams.net 使用方法

0 Preface/Foreword 在工作中&#xff0c;经常需要用到框图&#xff0c;流程图&#xff0c;时序图&#xff0c;等等&#xff0c;draw.io可以完成以上工作。 official website:draw.io 1 Usage 1.1 VS code插件 draw.io可以扩展到VS code工具中。

百度搜索展现服务重构:进步与优化

作者 | 瞭东 导读 本文将简单介绍搜索展现服务发展过程&#xff0c;以及当前其面临的三大挑战&#xff1a;研发难度高、架构能力欠缺、可复用性低&#xff0c;最后提出核心解决思路和具体落地方案&#xff0c;期望大家能有所收货和借鉴。 全文4736字&#xff0c;预计阅读时间12…

产品入门第四讲:Axure动态面板

&#x1f4da;&#x1f4da; &#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​​​​​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Axure》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还…

若要接收后续 Google Chrome 更新,您需使用 Windows 10 或更高版本

无差别提示&#xff0c;每次浏览器只提示&#xff0c;未提供关闭按钮 “若要接收后续 Google Chrome 更新&#xff0c;您需使用 Windows 10 或更高版本。该计算机目前使用的是 Windows 7。” 管用&#xff0c;不清楚原理 如何关闭“若要接收后续 google chrome 更新,您需使用 …

17.分割有效信息【2023.12.9】

1.问题描述 有时候我们需要截取字符串以获取有用的信息&#xff0c;比如对于字符串 “日期&#xff1a;2010-10-29”&#xff0c;我们需要截取后面的 10 个字符来获取日期&#xff0c;以便进行进一步分析。编写一个程序&#xff0c;输入一个字符串&#xff0c;然后输出截取后的…

【Spark精讲】Spark Shuffle详解

目录 Shuffle概述 Shuffle执行流程 总体流程 中间文件 ShuffledRDD生成 Stage划分 Task划分 Map端写入(Shuffle Write) Reduce端读取(Shuffle Read) Spark Shuffle演变 SortShuffleManager运行机制 普通运行机制 bypass 运行机制 Tungsten Sort Shuffle 运行机制…

springboot(ssm青年公寓服务平台 民宿预约系统Java系统

springboot(ssm青年公寓服务平台 民宿预约系统Java系统 ​​​​​​​开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&a…

Spark环境搭建和使用方法

目录 一、安装Spark &#xff08;一&#xff09;基础环境 &#xff08;二&#xff09;安装Python3版本 &#xff08;三&#xff09;下载安装Spark &#xff08;四&#xff09;配置相关文件 二、在pyspark中运行代码 &#xff08;一&#xff09;pyspark命令 &#xff08…

AR眼镜光学方案_AR眼镜整机硬件定制

增强现实(Augmented Reality&#xff0c;AR)技术通过将计算机生成的虚拟物体或其他信息叠加到真实世界中&#xff0c;实现对现实的增强。AR眼镜作为实现AR技术的重要设备&#xff0c;具备虚实结合、实时交互的特点。为了实现透视效果&#xff0c;AR眼镜需要同时显示真实的外部世…

基于vue实现的疫情数据可视化分析及预测系统-计算机毕业设计推荐django

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

mac python安装grpcio以及xcode升级权限问题记录

问题1: ERROR: Could not build wheels fol grpcio, which is required to install pyproject.toml-based projects pip3 install --no-cache-dir --force-reinstall -Iv grpcio1.41.0 # (我这里是降级安装的) 问题2: fatal error: ‘stdio.h’ file not found 25 | #include …

GitHub 深度解析:高级功能和最佳实践

简介&#xff1a; 本文将深入介绍 GitHub 的高级功能&#xff0c;并提供代码示例帮助读者更好地理解和应用这些概念&#xff0c;包括团队协作、自动化、权限管理和工作流程优化。 1. GitHub Actions 自动化流程 示例&#xff1a;自动化测试和部署 name: CI/CD Pipelineon:pus…

案例课7——百度智能客服

1.公司介绍 百度智能客服是百度智能云推出的将AI技术赋能企业客服业务的一揽子解决方案。该方案基于百度世界先进的语音技术、自然语言理解技术、知识图谱等构建完备的一体化产品方案&#xff0c;结合各行业头部客户丰富的运营经验&#xff0c;持续深耕机场服务、电力调度等场…

Spring Boot编写自定义校验注解

1、编写一个自定义的校验注解&#xff0c;可以参考官方提供的javax.validation.constraints包下的注解 import javax.validation.Constraint; import javax.validation.Payload; import java.lang.annotation.Documented; import java.lang.annotation.Retention; import java…

智能化配电房

智能化配电房是一种集成了先进技术和智能化设备的配电房&#xff0c;通过智能采集终端与通信设备&#xff0c;实时将电气参数、运行信息和环境数据传送至智慧电力物联网平台—电易云&#xff0c;对配电室进行数字化升级&#xff0c;对运维工作数字化升级&#xff0c;建设电力系…

使用Qt制作网易云播放器的歌曲排行界面

&#xff01;&#xff01;&#xff01;直接上图&#xff01;&#xff01;&#xff01; &#xff01;&#xff01;&#xff01;直接上图&#xff01;&#xff01;&#xff01; &#xff01;&#xff01;&#xff01;直接上图&#xff01;&#xff01;&#xff01; 网易云排行榜…

Linux(二十一)——virtualenv安装成功之后,依然提示未找到命令(-bash: virtualenv: 未找到命令)

Linux(二十一)——virtualenv安装成功之后&#xff0c;依然提示未找到命令&#xff08;-bash: virtualenv: 未找到命令&#xff09; 解决办法&#xff1a; 创建软连接 ln -s /usr/local/python3/bin/virtualenv /usr/bin/virtualenv