数理统计基础:参数估计与假设检验

在学习机器学习的过程中,我充分感受到概率与统计知识的重要性,熟悉相关概念思想对理解各种人工智能算法非常有意义,从而做到知其所以然。因此打算写这篇笔记,先好好梳理一下参数估计与假设检验的相关内容。

1 总体梳理

先从整体结构上进行一个把握。数理统计的主要任务是通过样本的信息推断总体的信息,即统计推断工作。统计推断主要有两大类问题:参数估计假设检验。它们都建立在抽样分布理论的基础之上,但角度不同。参数估计是利用样本信息推断未知的总体参数;而假设检验是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。参数估计又分为点估计区间估计,假设检验也可以根据具体问题分为单侧检验和双侧检验。

在正式开始前,对统计量抽样分布进行简要的介绍,有助于后面的理解。

统计量:统计量是样本的函数,且不含任何未知参数。若 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是总体 X X X 的样本,统计量可表示为 T = T ( X 1 , X 2 , . . . , X n ) T=T(X_1,X_2,...,X_n) T=T(X1,X2,...,Xn)。统计量依赖且只依赖于样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,它不含总体分布的任何未知参数。也就是说,当获得了样本观测值后,统计量的值可以被唯一确定下来。

统计量也是随机变量,统计量的分布叫抽样分布 。统计量的分布与样本分布有关,样本分布与未知的总体分布有关,因此抽样分布也与总体分布有关。一般求出统计量的分布是非常困难的事,但如果总体是正态分布,问题会变得相对简单。
以样本平均数为例,它是总体平均数的一个估计量,如果按照相同的样本容量,相同的抽样方式,反复地抽取样本,每次可以计算一个平均数,所有可能样本的平均数所形成的分布,就是样本平均数的抽样分布。

2 参数估计

总体的信息是由总体的分布来刻画的,在实际问题中,往往可以根据问题的背景确定该随机现象的总体所具有的分布类型,但是总体中往往有些参数是未知的。一般来说,这些参数很难精确求出,为此要从总体中抽取样本对其进行估计,这类问题称为参数估计问题。

2.1 点估计

点估计是通过样本值求出总体参数的一个具体的估计量和估计值(这里说的“具体的估计值”是为了和区间估计相对,区间估计是给出区间和置信度,而不是具体的值). 其一般的步骤可概括为 “抽样—构造—代值—计算”

  1. 设总体 X X X 的分布函数 F ( x ; θ ) F(x;\theta) F(x;θ) 形式已知,其中含有一个未知参数 θ \theta θ
  2. 从总体中抽取样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn
  3. 构造合适的统计量 g ( X 1 , X 2 , . . . , X n ) g(X_1,X_2,...,X_n) g(X1,X2,...,Xn)作为 θ \theta θ 的估计量,记为 θ ^ = g ( X 1 , X 2 , . . . , X n ) \hat{\theta}=g(X_1,X_2,...,X_n) θ^=g(X1,X2,...,Xn)
  4. 代入样本观测值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,得到估计值 θ ^ = g ( x 1 , x 2 , . . . , x n ) \hat{\theta}=g(x_1,x_2,...,x_n) θ^=g(x1,x2,...,xn)

2.1.1 矩估计

矩估计法的基本思想是替换原理,即用样本矩替换同阶总体矩。·其依据是由大数定律知,各阶样本矩依概率收敛于同阶总体矩,于是可令各阶样本矩与同阶总体矩相等,下式中 i 代表阶数,k 代表总体中未知参数个数,有几个未知参数就列几个方程: E ( X i ) = A i = 1 n ∑ j = 1 n x j i ( i = 1 , 2 , . . . , k ) E(X^i)=A_i=\frac{1}{n}\sum_{j=1}^nx_j^i\quad(i=1,2,...,k) E(Xi)=Ai=n1j=1nxji(i=1,2,...,k)

是对变量分布和形态特点的一组度量。n阶矩被定义为变量的n次方与其概率密度函数之积的积分。直接使用变量计算的矩被称为原始矩(raw moment),移除均值后计算的矩被称为中心矩(central moment)。变量的一阶原始矩等价于数学期望(expectation)、二至四阶中心矩被定义为方差(variance)、偏度(skewness)和峰度(kurtosis)。

举个最简单的例子,设总体 X X X 的分布为 F ( x ; θ ) F(x;\theta) F(x;θ) θ \theta θ为待估参数, X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 为来自总体的样本。那么 E ( X ) E(X) E(X) 应为 θ \theta θ 的函数 h ( θ ) h(\theta) h(θ),由大数定律知样本均值依概率收敛于总体均值,因此可令 E ( X ) = X ‾ = h ( θ ) E(X)=\overline{X}=h(\theta) E(X)=X=h(θ)将样本观测值代入求出 X ‾ \overline{X} X,再解此方程求出 θ \theta θ 即可。这个过程可以看作是用样本一阶矩 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\frac{1}{n}\sum_{i=1}^nX_i X=n1i=1nXi 估计总体一阶矩 E ( X ) E(X) E(X)的过程。结合点估计的一般步骤可知,这里构造的统计量就是样本均值。

【例】 设总体为 X X X ,总体均值 E ( X ) = μ E(X)=\mu E(X)=μ 和总体方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2 存在, X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 为来自总体的样本,求 μ \mu μ σ 2 \sigma^2 σ2的矩估计量。

要求两个未知参数,令一阶样本矩等于一阶总体矩,二阶样本矩等于二阶总体矩:
{ E ( X ) = X ‾ E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = A 2 \begin{cases} E(X)=\overline{X} \\\\E(X^2)=D(X)+[E(X)]^2=A_2 \end{cases} E(X)=XE(X2)=D(X)+[E(X)]2=A2 即: { μ = X ‾ σ 2 + μ 2 = 1 n ∑ i = 1 n X i 2 \begin{cases}\mu=\overline{X}\\ \\ \sigma^2+\mu^2=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 \end{cases} μ=Xσ2+μ2=n1i=1nXi2
解得矩估计量为 { μ ^ = X ‾ σ 2 ^ = 1 n ∑ i = 1 n X i 2 − X ‾ 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \begin{cases}\hat{\mu}=\overline{X}\\ \\ \hat{\sigma^2}=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 -\overline{X}^2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\overline{X})^2\end{cases} μ^=Xσ2^=n1i=1nXi2X2=n1i=1n(XiX)2


  • 优点: 直观简单,适用性广,无需知道总体分布的具体形式
  • 缺点: 要求总体矩存在,否则不能使用;只利用了矩的信息,没有充分利用分布对参数所提供的信息。

2.1.2 极大似然估计MLE

极大似然估计法(Maximum Likelihood Estimate) 是建立在极大似然原理基础上的。所谓极大似然,可理解为“最大可能性”,即令每个样本属于其真实标记的可能性越大越好。

极大似然原理的直观想法是:概率最大的事最可能出现。设一个随机试验有若干可能结果 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,若在一次结果中 A k A_k Ak 出现,则认为 A k A_k Ak 出现的概率较大,那未知参数的取值应当满足 A k A_k Ak 发生概率最大。

为了介绍极大似然估计,这里引入似然函数的概念:

似然函数     设 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN 为来自总体 X X X 的简单随机样本, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn 为样本观测值,称 L ( θ ) = ∏ i = 1 n p ( x i , θ ) L(\theta)=\prod\limits_{i=1}^np(x_i,\theta) L(θ)=i=1np(xi,θ) 为参数 θ \theta θ 的似然函数。

当总体 X X X 是离散型随机变量时, p ( x i , θ ) p(x_i,\theta) p(xi,θ) 表示 X X X 的分布列 P { X = x i } P\{X=x_i\} P{X=xi}
当总体 X X X 是连续型随机变量时, p ( x i , θ ) p(x_i,\theta) p(xi,θ) 表示 X X X 的密度函数 f ( x , θ ) f(x,\theta) f(x,θ) x i x_i xi处的取值 。

参数 θ \theta θ 的似然函数 L ( θ ) L(\theta) L(θ) 实际上就是样本 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN 恰好取观测值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn (或其邻域)的概率。以离散型为例:

L ( θ ) = P { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } = P { X 1 = x 1 } P { X 2 = x 2 } . . . P { X n = x n } = ∏ i = 1 n p ( x i , θ ) \begin{aligned} L(\theta) &=P\{X_1=x_1,X_2=x_2,...,X_n=x_n\} \\ &=P\{X_1=x_1\}P\{X_2=x_2\}...P\{X_n=x_n\} \\ &=\prod_{i=1}^np(x_i,\theta)\end{aligned} L(θ)=P{X1=x1,X2=x2,...,Xn=xn}=P{X1=x1}P{X2=x2}...P{Xn=xn}=i=1np(xi,θ) 从这个公式也可以看出,极大似然估计的一个重要假设是:来自总体的简单随机样本 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN 是独立同分布的。

存在一个只与观测值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn 有关是实数 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn) ,使 L ( θ ^ ) = m a x L ( θ ) L(\hat{\theta})=max\ L(\theta) L(θ^)=max L(θ) ,则称 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn) 为参数 θ \theta θ 的最大似然估计值, θ ^ ( X 1 , X 2 , . . . , X n ) \hat{\theta}(X_1,X_2,...,X_n) θ^(X1,X2,...,Xn)是极大似然估计量。

极大似然估计对未知参数的数量没有要求,可以求一个,也可以一次求出多个。它要求总体的分布是已知的。由于似然函数是多个函数乘积的形式,为简化运算可以考虑对 L ( θ ) L(\theta) L(θ) 取对数得到对数似然函数 I n L ( θ ) InL(\theta) InL(θ)

【例】 设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 为来自总体的样本,求未知参数 μ \mu μ σ 2 \sigma^2 σ2的最大似然估计量。

2.1.3 最大后验估计MAP

2.1.4 最小二乘估计

2.1.5 贝叶斯估计

2.2 区间估计

3 假设检验

【几年前的草稿,发出来先用着、、、】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220569.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

串口通信(4)-C#串口通信入门实例

本文通过实例讲解C#串口通信。 入门实例设计一个串口助手,能够很好的涵盖串口要点的使用。 目录 一、成品图 二、界面文件 三、后台代码 四、实例中要点 一、成品图 如下: 实现的过程 创建winform项目,将Form1文件的名称改为MainForm&…

Windows汇编调用printf

VS2022 汇编 项目右键 生成依赖项 生成自定义 勾选masm 链接器 高级 入口点 main X86 .686 .model flat,stdcall option casemap:none includelib ucrt.lib includelib legacy_stdio_definitions.libEXTERN printf:proc.data szFormat db %s,0 szStr db hello,0.code main…

关于职场伪勤奋

前段时间看了一些关于勤奋学习、职场成长类的书籍,就在思考勤奋学习和职场的关系时,结合个人的理解,我定义了一种勤奋叫职场“伪勤奋”。那关于职场“伪勤奋”的定义和理解,与大家分享: 1、选择性任务完成 伪勤奋特征…

vue 图片等比例缩放上传

需求:上传图片之前按比例缩小图片分辨率,宽高不超过1920不处理图片,宽高超过1920则缩小图片分辨率,如果是一张图片请参考这篇博客:js实现图片压缩、分辨率等比例缩放 我根据这篇博主的分享,写下了我的循环上…

HarmonyOS使用Web组件

Web组件的使用 1 概述 相信大家都遇到过这样的场景,有时候我们点击应用的页面,会跳转到一个类似浏览器加载的页面,加载完成后,才显示这个页面的具体内容,这个加载和显示网页的过程通常都是浏览器的任务。 ArkUI为我…

chatGPT 国内版,嵌入midjourney AI创作工具

聊天GPT国内入口,免切网直达,可直接多语言对话,操作简单,无需复杂注册,智能高效,即刻使用.可以用作个人助理,学习助理,智能创作、新媒体文案创作、智能创作等各种应用场景! 地址: https://ai.wboat.cn/

【51单片机系列】直流电机使用

本文是关于直流电机使用的相关介绍。 文章目录 一、直流电机介绍二、ULN2003芯片介绍三、在proteus中仿真实现对电机的驱动 51单片机的应用中,电机控制方面的应用也很多。在学习直流电机(PWM)之前,先使用GPIO控制电机的正反转和停止。但不能直接使用GPIO…

06 python 文件基础操作

6.1 .1文件读取操作 演示对文件的读取 # 打开文件 import timef open(02_word.txt, r, encoding"UTF-8") print(type(f))# #读取文件 - read() # print(f读取10个字节的结果{f.read(10)}) # print(f读取全部字节的结果{f.read()})# #读取文件 - readLines() # lines…

面试官:说说你对 linux 用户管理的理解?相关的命令有哪些?

面试官:说说你对 linux 用户管理的理解?相关的命令有哪些? 一、是什么 Linux是一个多用户的系统,允许使用者在系统上通过规划不同类型、不同层级的用户,并公平地分配系统资源与工作环境 而与 Windows 系统最大的不同…

基于MyBatis二级缓存深入装饰器模式

视频地址 学习文档 文章目录 一、示意代码二、装饰器三、经典案例—MyBatis二级缓存1、Cache 标准定义2、PerpetualCache 基础实现3、增强实现3-1、ScheduledCache3-2、LruCache 先来说说我对装饰器理解:当你有一个基础功能的代码,但你想在不改变原来代…

高效营销系统集成:百度营销的API无代码解决方案,提升电商与广告效率

百度营销API连接:构建无代码开发的高效集成体系 在数字营销的高速发展时代,企业追求的是快速响应市场的能力以及提高用户运营的效率。百度营销API连接正是为此而生,它通过无代码开发的方式,实现了电商平台、营销系统和CRM的一站式…

墒情监测FDS-400 土壤温湿电导率盐分传感器

墒情监测FDS-400 土壤温湿电导率盐分传感器产品概述 土壤温度部分是由精密铂电阻和高精度变送器两部分组成。变送器部分由电源模块、温度传感模块、变送模块、温度补偿模块及数据处理模块等组成,解决铂电阻因自身特点导入的测量误差,变送器内有零漂电路…

Redis队列原理解析:让你的应用程序运行更加稳定!

一、消息队列简介 消息队列(Message Queue),字面意思就是存放消息的队列。最简单的消息队列模型包括 3 个角色: 消息队列:存储和管理消息,也被称为消息代理(Message Broker)生产者…

Turtle绘制菱形-第11届蓝桥杯选拔赛Python真题精选

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第16讲。 Turtle绘制菱形&a…

六.聚合函数

聚合函数 1.什么是聚合函数1.1AVG和SUM函数1.2MIN和MAX函数1.3COUNT函数 2.GROUP BY2.1基本使用2.2使用多个列分组2.3GROUP BY中使用WITH ROLLUP 3.HAVING3.1基本使用3.2WHERE和HAVING的区别 4.SELECT的执行过程4.1查询的结构4.2SELECT执行顺序4.3SQL执行原理 1.什么是聚合函数…

用友 U8总账凭证打印设置

总账--凭证打印——设置 是设置凭证打印显示的格子框,勾上就有框,去掉就没有框。

判断css文字发生了截断,增加悬浮提示

示例: 固定显示宽度,溢出显示...,利用了css的属性,想要实现成下面这样: 针对溢出的文字,hover显示全部。 提示很好加,使用tooltip组件就行了,难点是如何判断是否发生了文字溢出。…

JS数组与它的42个方法

前言 数组在js中作为一个非常重要的类型之一,在我们对数据处理,存储数据,条件渲染的时候经常会用到,所以随着ES的不断更新,数组的方法也是越来越多,也让我们使用数组对数据操作的时候,越来越简…

竞赛保研 python 爬虫与协同过滤的新闻推荐系统

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python 爬虫与协同过滤的新闻推荐系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&…

Python求小于m的最大10个素数

为了找到小于m的最大10个素数&#xff0c;我们首先需要确定m的值。然后&#xff0c;我们可以使用一个简单的算法来检查每一个小于m的数字是否是素数。 下面是一个Python代码示例&#xff0c;可以找到小于m的最大10个素数&#xff1a; def is_prime(n): if n < 1: …