使用YOLOv8训练图集详细教程

 准备自己的数据集

训练YOLOv8时,选择的数据格式是VOC,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv8进行使用。

1、创建数据集

我的数据集都在保存在mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下

mydata

images # 存放图片

xml # 存放图片对应的xml文件

dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)

示例如下:

mydata文件夹下内容如下:

image为VOC数据集格式中的JPEGImages,内容如下:

xml文件夹下面为.xml文件(标注工具采用labelImage),内容如下:

dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:

    # coding:utf-8import osimport randomimport argparseparser = argparse.ArgumentParser()# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')# 数据集的划分,地址选择自己数据下的ImageSets/Mainparser.add_argument('--txt_path', default='dataSet', type=str, help='output txt label path')opt = parser.parse_args()trainval_percent = 1.0train_percent = 0.9xmlfilepath = opt.xml_pathtxtsavepath = opt.txt_pathtotal_xml = os.listdir(xmlfilepath)if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)list_index = range(num)tv = int(num * trainval_percent)tr = int(tv * train_percent)trainval = random.sample(list_index, tv)train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')file_test = open(txtsavepath + '/test.txt', 'w')file_train = open(txtsavepath + '/train.txt', 'w')file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()file_train.close()file_val.close()file_test.close()

运行代码后,在dataSet 文件夹下生成下面四个txt文档:

三个txt文件里面的内容如下:

2、转换数据格式

接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。格式如下:

创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:

    # -*- coding: utf-8 -*-import xml.etree.ElementTree as ETimport osfrom os import getcwdsets = ['train', 'val', 'test']classes = ["a", "b"]   # 改成自己的类别abs_path = os.getcwd()print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/mydata/xml/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/mydata/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):# difficult = obj.find('difficult').textdifficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()for image_set in sets:if not os.path.exists('data/mydata/labels/'):os.makedirs('data/mydata/labels/')image_ids = open('data/mydata/dataSet/%s.txt' % (image_set)).read().strip().split()list_file = open('paper_data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/mydata/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

3、配置文件

1)数据集的配置

在mydata文件夹下新建一个mydata.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt),这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,mydata.yaml内容如下:

2) 选择一个你需要的模型

在ultralytics/models/v8/目录下是模型的配置文件,这边提供s、m、l、x版本,逐渐增大(随着架构的增大,训练时间也是逐渐增大),假设采用yolov8x.yaml,只用修改一个参数,把nc改成自己的类别数,需要取整(可选) 如下:

至此,自定义数据集已创建完毕,接下来就是训练模型了。

1、下载预训练模型

在YOLOv8的GitHub开源网址上下载对应版本的模型

2、训练

接下来就可以开始训练模型了,命令如下:

yolo task=detect mode=train model=yolov8x.yaml data=mydata.yaml epochs=1000 batch=16

以上参数解释如下:

task:选择任务类型,可选['detect', 'segment', 'classify', 'init']

mode: 选择是训练、验证还是预测的任务蕾西 可选['train', 'val', 'predict']

model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yaml

data: 选择生成的数据集配置文件

epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。

batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。

文章参考:(超详细)YOLOv8训练的练习数据集 - 知乎 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220490.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

03.HTML常用标签

HTML常用标签 0.思维导图大纲 1.基本标签 详细介绍 注意 不要用 br 来增加文本之间的行间隔,应使用 p 元素,或后面即将学到的 CSS margin 属性hr 的语义是分隔,如果不想要语义,只是想画一条水平线,那么应当使用 CSS…

node-static 任意文件读取漏洞复现(CVE-2023-26111)

0x01 产品简介 node-static 是 Node.js 兼容 RFC 2616的 HTTP 静态文件服务器处理模块,提供内置的缓存支持。 0x02 漏洞概述 node-static 存在任意文件读取漏洞,攻击者可通过该漏洞读取系统重要文件(如数据库配置文件、系统配置文件&#…

扩展学习|商务智能与社会计算

一、概念介绍 (一)商务智能 商务智能(Business Intelligence,简称BI)是一种基于数据分析的决策支持系统,旨在帮助企业或组织更好地理解和利用自身数据,发现其中的模式和趋势,并提供…

Spring配置动态数据库

首先创建一个SpringWeb项目——dynamicdb&#xff08;spring-boot2.5.7&#xff09; 然后引入相关依赖lombok、swagger2、mybatis-plus&#xff0c;如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven…

Python数据科学视频讲解:Python的数据运算符

2.9 Python的数据运算符 视频为《Python数据科学应用从入门到精通》张甜 杨维忠 清华大学出版社一书的随书赠送视频讲解2.9节内容。本书已正式出版上市&#xff0c;当当、京东、淘宝等平台热销中&#xff0c;搜索书名即可。内容涵盖数据科学应用的全流程&#xff0c;包括数据科…

stateflow 之图函数、simulink函数和matlab函数使用及案例分析

目录 前言 1. 图函数graph function 2.simulink function 3.matlab function 4.调用stateflow中的几种函数方式 前言 对于stateflow实际上可以做simulink和matlab的所有任务&#xff0c;可以有matlab的m语言&#xff0c;也可以有simulink的模块&#xff0c;关于几种函数在…

头歌-Python 基础

第1关&#xff1a;建模与仿真 1、 建模过程&#xff0c;通常也称为数学优化建模(Mathematical Optimization Modeling)&#xff0c;不同之处在于它可以确定特定场景的特定的、最优化或最佳的结果。这被称为诊断一个结果&#xff0c;因此命名为▁▁▁。 填空1答案&#xff1a;决…

机器学习:从概念到应用

机器学习&#xff1a;从概念到应用 一、引言 随着科技的飞速发展&#xff0c;人工智能已经渗透到我们生活的方方面面。作为人工智能领域的一个重要分支&#xff0c;机器学习正在改变我们的世界。它通过让计算机从数据中学习&#xff0c;实现自我优化和改进&#xff0c;为各行…

【Git从入门到精通 | 02】.gitignore忽略文件不生效怎么办?

这是机器未来的第64篇文章 原文首发地址&#xff1a;https://robotsfutures.blog.csdn.net/article/details/134989872 《Git源码版本管理系列》快速导航&#xff1a; 【Git从入门到精通 | 01】企业Git使用github工作流最佳实践 文章目录 1. 问题场景2. 原因解析3. 处理办法 写…

CTF-Java做题记录合集

文章目录 前言[CISCN 2023]deserbug[MTCTF2022]easyjava[羊城杯 2020]a_piece_of_java[红明谷CTF 2021]JavaWeb 前言 年底都比较忙&#xff0c;很久没有静下心来打过CTF了&#xff0c;最近Java的各种链子也是接触了不少&#xff0c;于是静下心来打算做点Java类的题目&#xff…

linux 网络子系统 摘要

当你输入一个网址并按下回车键的时候&#xff0c;首先&#xff0c;应用层协议对该请求包做了格式定义;紧接着传输层协议加上了双方的端口号&#xff0c;确认了双方通信的应用程序;然后网络协议加上了双方的IP地址&#xff0c;确认了双方的网络位置;最后链路层协议加上了双方的M…

【docker】镜像使用(Nginx 示例)

查看本地镜像列表 docker images删除本地镜像 # docker rmi [容器 ID]docker rmi a6bd71f48f68 查找镜像 docker search nginx 参数介绍 NAME: 镜像仓库源的名称DESCRIPTION: 镜像的描述OFFICIAL: 是否 docker 官方发布STARS: 点赞、喜欢AUTOMATED: 自动构建。 拉去镜像 …

SQL小技巧3:分层汇总

前几天&#xff0c;QQ学习群有个小伙伴问我一个使用SQL分层汇总的问题。 今天正好分享下。 需求描述 在数据报表开发的工作中&#xff0c;经常会遇到需要对数据进行分组汇总的情况。 假设有一个销售数据表sales&#xff0c;包含列region&#xff08;地区&#xff09;、mont…

LInux查看cpu、磁盘、内存、网络的命令

LInux查看cpu、磁盘、内存、网络的命令 1.查看cpu系列2.查看内存方面3.查看磁盘相关 1.查看cpu系列 想知道了cpu性能好不好、忙不忙可以用lscpu、uptime、top、htop。 1.1 top 命令查看系统的实时负载&#xff0c; 包括进程、CPU负载、内存使用等等 top内容详解 项目意义us用…

出海电商访问亚马逊打开很慢!有什么办法可以快速解决?

亚马逊作为全球最大的电商平台&#xff0c;很多中国卖家在平台上做着买卖。亚马逊中国卖每天都要频繁访问亚马逊店铺处理回复邮件和处理订单&#xff0c;上传产品等等事宜&#xff0c;但是时常会遇到打开一个新页面需要等待很长时间&#xff0c;更甚者直接打不开页面! 亚马逊打…

纸质表格扫描转Excel的利器,让您省钱省劲

将纸质表格扫描到电脑Excel上是一种快捷而高效的数字化处理方法&#xff0c;使得数据可以方便地进行编辑、分析和共享。本文将介绍几种常用的方法来完成这项任务。 第一种方法是使用扫描仪。现代扫描仪具备较高的分辨率和颜色还原能力&#xff0c;可以将纸质表格转化为高质量的…

Mybatis插件对指定字段加解密

Mybatis插件对指定字段加解密 1、需求环境&#xff1a;2、需求拆分3、代码实现 (懒得去除敏感信息了&#xff0c;先说明以下全是截图无代码)对存量数据对增量数据 1、需求环境&#xff1a; 在整个项目都结束之后&#xff0c;甲方希望库表内所有涉及到电话号码、详细地址、身份…

thinkphp连接数据库mysql 报错问题

第一 看报错日志php如果是下面这个报错的话 就是mysql 数据库没有验证连接 ​​​​​​​[2023-12-13T09:57:0108:00][error] [10501]SQLSTATE[HY000] [2054] The server requested authentication method unknown to the client 我们就可以去mysql 的文件检查 验证身份 使…

Python爬取旅游网站热门景点信息的技术性文章

目录 一、引言 二、准备工作 三、爬取热门景点信息 1、分析网页结构 2、发送HTTP请求 3、解析HTML文档 4、提取所需信息 5、保存数据到文件或数据库 四、优化爬虫程序性能和效率 五、异常处理与日志记录 1、异常处理 2、日志记录 六、安全性与合法性考虑 七、总结…

leetcode--3. 无重复字符的最长子串[滑动窗口\哈希表 c++]

原题 &#xff1a; 3. 无重复字符的最长子串 - 力扣&#xff08;LeetCode&#xff09; 题目解析&#xff1a; 最长子串可以用滑动窗口解决&#xff0c;无重复字符可以使用哈希表解决。 算法原理&#xff1a; 滑动窗口哈希表 哈希表作为一个数组存放每个字符出现的次数。 …