现代雷达车载应用——第2章 汽车雷达系统原理 2.4节 雷达波形和信号处理

        经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。

2.4 雷达波形和信号处理

        对于连续波雷达来说,波形决定了其基本信号处理流程以及一些关键功能。本节将以FMCW波形为例,讨论信号模型和基本信号处理流程。

        图2.15绘制了FMCW波形示例。这个波形由一系列的chirp组成。对于每个chirp,其频率与时间的关系定义为

          (2.35)

图2.15 典型FMCW波形

        这里-T0/2 ≤ t ≤ T0/2。T0是chirp长度,fc是中心频率,BW是带宽。

        基于(2.12),发射信号的瞬时相位φ(t)是f(t)的积分:

          (2.36)

        并且,-T0/2 ≤ t ≤ T0/2

        其中C是不定积分中的常数,可以在接下来的计算中忽略。时域传输信号为

          (2.38)

        这里,

          (2.39)

        是chirp的斜率。

2.4.1 距离处理

         假设静态目标在距离R处,目标的反射信号时域表达式为:

           (2.40)

         这里δt0 = 2R/c是电磁波的往返延迟,ϕ是相位,wR(t)是矩形窗函数:

           (2.41)

         FMCW雷达结构中的去chirp处理是将接收信号与原始发射信号混合处理。基带信号的数学表达式为stx (t)乘以接收信号s*rx (t)的复共轭:

           (2.42)

         由于在典型的汽车应用中接近于零,因此可以丢弃它。ϕb是剩余项,在这种情况下不感兴趣,因此也可以丢弃。简化后的基带信号为:

           (2.43)

         对基带信号进行傅里叶变换后,基带信号的频域表示为

           (2.44)

           (2.45)

         对于sinc函数,峰值是使得fp – Kδt0 = 0的位置,这里fp是峰值频率。因此,目标距离可由下式获得:

           (2.46)

2.4.2 多普勒处理

         在(2.45),有个相位项,也和目标位置相关。单chirp的相位项是一个常数。然而,对于第1个chirp之后的第2个chirp,如果目标运动则它的相位项是不同的,因为δt1≠δt0。因此,最简单获取多普勒信息的方式是比较两个连续chirp的相位差:

           (2.47)

           (2.48)

          (2.49)

         这里R0是目标的初始距离,v是目标相对雷达的速度,Δt是两个连续chirp的时间差,ka是一个整数。2kaπ代表相位混叠。只有当ka=0时,才能获得正确速度。除了混叠,使用(2.49)的另一个主要问题是,如果有多个目标在同一距离,将很难获得每个目标的正确速度。

         寻找目标距离和多普勒的一种更流行、更可靠的方法是使用chirp序列,如图2.15所示。首先,对于(2.43),用δt代替δt0:

          (2.50)

         这里

           (2.51)

         τ是每个chirp的中心时间,并且0≤ τ < M*PRP,这里M是所有chirp数量。方程(2.50)能被写成t和τ的函数,通常被分别称作快时间和慢时间。

           (2.52)

         并且

          (2.53)

         经过排列,

  (2.54)

         信号处理部分在数字域操作,t=n/fs,这里n是chrip的第n个采样,fs是采样速率。对于第m个chirp,

           (2.55)

         第m个chirp的基带信号为

           (2.56)

        常数相位  (2.57)

        测距和chirp内多普勒相位  (2.58)

         chirp间多普勒相位  (2.59)

        距离多普勒耦合  (2.60)

        高阶项  (2.61)

        为了便于分析,这里忽略高阶项,因为在普通FMCW雷达系统中,该值非常接近1。有两个与时间相关的参数:n和m。离散傅里叶变换(DFT)可以先应用于n,得到

          (2.62)

          (2.63)

          (2.64)

        这里κ是距离单元,fsinc是一个类似于sinc函数的函数,定义为

          (2.65)

         这里N是采样长度,fsinc(0)=N是峰值。也称为第m个chirp的距离分布。与式(2.45)相似,距离曲线的峰值为

          (2.66)

         当目标的速度v=0,式(2.66)可以简化为

          (2.67)

         这和(2.46)匹配。当v≠0时,为了简化问题,假设目标在chirp序列中的速度为常数。设Rm = R0 + PRPmv为第m个chirp中心的目标距离。目标的距离单元为

          (2.68)

         而且

          (2.69)

        得到目标的射程Rm和距离单元后,下一步是尝试推导目标的多普勒特性。为了找到目标的速度,需要识别多普勒单元的位置。已知,让

          (2.70)

        式中,β(m)为振幅变化,峰值为

          (2.71)

        基于目标速度为常数的假设,β(m)和参考的(M-1)/2对称

          (2.72)

        因此,β(m)的DFT结果的幅度也是对称的:

          (2.73)

        把和(2.72)放到(2.62),方程可以简化为:

  (2.74)

        对m应用DFT,基带信号可进一步导出为:

          (2.75)

          (2.76)

          (2.77)

        这里*是卷积,ξ是多普勒单元。如上所述,B(ξ)的幅度是对称的,和一个窗函数类似。fsinc和B(ξ)的卷积不会改变fsinc的峰值位置。因此,目标的多普勒单元为:

          (2.78)

        目标的速度为:

          (2.79)

        因此,可以从式(2.69)和式(2.79)中提取目标的距离和多普勒。

        在距离多普勒处理的实际算法实现中,可以直接对进行二维快速傅里叶变换,得到,效率高,目标的距离和多普勒信息可以在毫秒内测量。这对于通常需要高更新速率和低延迟的汽车应用程序至关重要。

2.4.3 FMCW汽车雷达应用的典型波形参数

        在76-81 GHz范围内工作的汽车雷达系统可以根据雷达应用分为三大组。每组有不同的技术波形参数来满足要求。

        第一组使用76-77 GHz频段,被称为LRR系统。LRR包括自适应巡航控制(ACC)和(高速)防碰撞(CA)等应用。这些应用帮助司机驾驶,旨在避免高速事故和碰撞。在LRR应用中,雷达探测距离可达250米。通常需要1GHz连续带宽保证足够的距离分辨率。

        另外两组使用76-81 GHz频段,覆盖短程和中程雷达(SRR和MRR)应用。一般来说,这些应用需要更高的距离分辨率,并使用高达4 GHz的带宽。近距离雷达应用,如舱内占用探测和靠近车辆的障碍物探测,不需要很长的探测距离。一些SRR应用,如行人检测、停车辅助和低速(<30公里/小时)紧急制动,可能需要更高的视场(FOV)。对于MRR应用,如后方交通横穿警报、盲点检测和变道检测,检测范围可达100米,视野更窄。

        扫描时间显示了基于应用的差异,通常选在10到40us。尽管汽车雷达波形参数根据雷达硬件的不同而有所不同,但2.5总结了经典FMCW的雷达波形参数,用于选定的应用。感兴趣的读者可参考[26],了解76-77和77-81 GHz频段雷达系统的详细技术参数。

表2.5 汽车雷达波形参数实例

2.4.4 窗锥函数

        在距离和多普勒处理*过程中,限时基带信号经过傅里叶变换后得到sinc函数形式的信号,如(2.45)。当sinc函数在目标位置产生峰值时,它创建了一个由“主瓣”和“副瓣”组成的信号。主瓣包含高功率并在预定目标位置(如距离和多普勒)产生峰值。在半功率波束宽度处的主瓣宽度(比峰值功率低3db)决定了距离分辨率。由sinc函数产生的其他瓣称为“副瓣”,通常表示与检测目标相关的无用信号回波。由于sinc函数的第一副瓣比主瓣峰值低约13.26 dB,这些不想要的副瓣可能会阻碍弱目标。

        为了减轻副瓣,提出了可供选择的窗锥函数[27]。它们中的许多在当前系统中用于调整主瓣和副瓣之间的交换。有一些选择窗函数的指标,也可以在选择线性FMCW以外的替代波形时使用。

        主瓣宽度:包含目标响应的较高(峰值)功率的瓣。主瓣的理论宽度与波形的带宽有关。使用不同的窗函数可以拓宽主瓣。

        信噪比损失:使用不同的窗锥会导致目标响应的峰值功率损失,因此信噪比降低。sinc函数的信噪比损失为零,并假定为基准。

        峰值旁瓣比(PSLR):峰值功率与最大旁瓣功率之比。更大的PSLR优选用于探测较弱的目标。对于sinc函数,PSLR为-13.26 dB。零点出现在k (1/T0),这里 k =±1,±2 ,…,N / 2。

        综合旁瓣电平:旁瓣能量与主瓣能量之比。sinc函数的综合旁瓣电平比为-10.12 dB(从第一个空到旁瓣的末端,不包括主瓣)。

         为了解决高旁瓣问题,使用窗函数增加PSLR,使主瓣宽度更宽。对于感兴趣的读者,可以在[27]中找到用于旁瓣控制的最常用窗锥函数的目录。当预定义的窗函数不能满足用户的要求时,可以使用现代优化技术对给定模板的窗函数以及期望的属性进行优化[28]。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220224.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EasyRecovery2024苹果电脑mac破解版安装包下载

EasyRecovery是一款操作安全、价格便宜、用户自主操作的非破坏性的只读应用程序&#xff0c;它不会往源驱上写任何东西&#xff0c;也不会对源驱做任何改变。它支持从各种各样的存储介质恢复删除或者丢失的文件&#xff0c;其支持的媒体介质包括&#xff1a;硬盘驱动器、光驱、…

VS Code串口监视插件Serial Monitor

文章目录 初步使用参数设置VS Code插件 初步使用 Serial Monitor&#xff0c;即串行监视器&#xff0c;提供串口和TCP协议的通信监控功能。在插件栏搜索安装之后&#xff0c;按下Ctrl打开终端&#xff0c;终端界面会多出一个串行监视器选项卡&#xff0c;进入之后&#xff0c;…

golang反射(reflect)虽爽,但很贵

标准库 reflect 为 Go 语言提供了运行时动态获取对象的类型和值以及动态创建对象的能力。反射可以帮助抽象和简化代码&#xff0c;提高开发效率。 但是使用反射势必会多出大量的操作指令&#xff0c;导致性能下降 案例 字段赋值方式对比 type Student struct {Name string…

如何使用 Redis 快速实现分布式锁?

本文我们来讨论如何使用 Redis 快速实现分布式锁。 分布式锁有很多种解决方案&#xff0c;前面简单介绍过&#xff0c;Redis 可以通过 set key 方式来实现分布式锁&#xff0c;但实际情况要更加复杂&#xff0c;比如如何确保临界资源的串行执行&#xff0c;如何及时释放&#…

用Flask搭建简单的web模型部署服务

目录结构如下&#xff1a; 分类模型web部署 classification.py import os import cv2 import numpy as np import onnxruntime from flask import Flask, render_template, request, jsonifyapp Flask(__name__)onnx_session onnxruntime.InferenceSession("mobilen…

Tomcat部署Activiti官方 流程设计器【数据库更换为Mysql !!!】

一、官网下载activiti6 解压后结构如下: database&#xff1a; 存放数据库对象相关脚本&#xff0c;包含不同的数据库脚本 libs&#xff1a; 包含activiti开发过程中需要用到的jar包和源码&#xff0c;不建议通过jar包直接引用&#xff0c;建议通过maven进行管理 wars&am…

大模型应用_FastGPT

1 功能 整体功能&#xff0c;想解决什么问题 官方说明&#xff1a;FastGPT 是一个基于 LLM 大语言模型的知识库问答系统&#xff0c;提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排&#xff0c;从而实现复杂的问答场景&#xff01;个人体会…

ubuntu将本机的wifi网络通过网线分享给另一台机器(用于没有有线网络,重装系统后无wifi驱动或者另一台设备没有wifi网卡)

1.将两台机器通过网线连接 2.在pci ethernet中设置选择另一台机器的mac address&#xff0c;ipv4中选择share to other computer&#xff0c;另一台机器上设置为动态ip&#xff0c;连接上之后另一台机器即可上网。

大数据机器学习深度解读DBSCAN聚类算法:技术与实战全解析

大数据机器学习深度解读DBSCAN聚类算法&#xff1a;技术与实战全解析 一、简介 在机器学习的众多子领域中&#xff0c;聚类算法一直占据着不可忽视的地位。它们无需预先标注的数据&#xff0c;就能将数据集分组&#xff0c;组内元素相似度高&#xff0c;组间差异大。这种无监…

Github 2023-12-14开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2023-12-14统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量非开发语言项目5TypeScript项目2JavaScript项目1Jupyter Notebook项目1PHP项目1 基于项目的学习 创建周期&a…

Python进阶(一)

1.Python中一切皆对象 1.1 Python中一切皆对象 JAVA中有class和object这两个概念&#xff0c;object只是class的一个实例。 而在Python中面向对象更加的彻底&#xff0c;class和函数都是对象。代码也是对象&#xff0c;模块也是对象。 函数和类也是对象&#xff0c;对象有四…

AUTOSAR_SWS_LogAndTrace文档中文翻译

1 Introduction and functional overview 本规范规定了AUTOSAR自适应平台日志和跟踪的功能。 日志和跟踪为AA提供接口&#xff0c;以便将日志信息转发到通信总线、控制台或文件系统。 提供的每个日志记录信息都有自己的严重性级别。对于每个严重级别&#xff0c;都提供了一个单…

bugku--source

dirsearch扫一下 题目提示源代码&#xff08;source&#xff09; 也就是源代码泄露&#xff0c;然后发现有.git 猜到是git泄露 拼接后发现有文件 但是点开啥也没有 kali里面下载下来 wegt -r 下载网站的所有内容 ls 查看目录 cd 进入到目录里面 gie reflog 引用日志使用…

如何用python编写抢票软件,python爬虫小程序抢购

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python小程序抢购脚本怎么写&#xff0c;如何用python编写抢票软件&#xff0c;现在让我们一起来看看吧&#xff01; 大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python小程序抢购脚本怎么写&#xff0c;如…

【洛谷算法题】P1422-小玉家的电费【入门2分支结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P1422-小玉家的电费【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…

diag_service的GLINK_IST是怎么来的

背景 平台&#xff1a;SA8155,QA 1.2.1 8155上集成了很多IP核&#xff0c;其中有不少的IP本质上是arm M核或者R核&#xff0c;这些模块在开发或者使用过程中也是需要监控和诊断的&#xff0c;但是他们并没有外部的调试接口&#xff0c;高通设计了整套诊断框架通过APSS&#x…

OpenHarmony应用开发——实现Toast提示功能-鸿蒙物联网应用开发-HarmonyOs应用开发

一、前言 本文我们将实现Toast样式的功能&#xff0c;以便于和用户进行简单、基本的信息交互。需要注意的是&#xff0c;本专栏&#xff08;OpenHarmony应用开发&#xff09;不阐述UI设计内容&#xff0c;而主要介绍大家开发中常遇到、常使用的功能问题&#xff0c;以及在物联网…

基于Dockerfile创建LNMP

实验组件 172.111.0.10&#xff1a;nginx docker-nginx 172.111.0.20&#xff1a;mysql docker-mysql 172.111.0.30&#xff1a;php docker-php 实验步骤 1.建立nginx-lnmp镜像及容器 cd /opt mkdir nginx cd nginx/ --上传nginx-1.22.0.tar.gz和wordpress-6.4.2-zh_C…

Android13适配所有文件管理权限

Android13适配所有文件管理权限 前言&#xff1a; 很早之前在Android11上面就适配过所有文件管理权限&#xff0c;这次是海外版升级到Android13&#xff0c;由于选择相册用的是第三方库&#xff0c;组内的同事没有上架Google的经验直接就提交代码&#xff0c;虽然功能没有问题…

自动化补丁管理软件

什么是自动化补丁管理 自动补丁管理&#xff08;或自动补丁&#xff09;是指整个补丁管理过程的自动化&#xff0c;从扫描网络中的所有系统到检测缺失的补丁&#xff0c;在一组测试系统上测试补丁&#xff0c;将它们部署到所需的系统&#xff0c;并提供定期更新和补丁部署状态…