目标检测检测精度

在一个数据集检测中,会产生四类检测结果:TP、TN 、FP 、FN:

T ——true 表示正确

F——false 表示错误

P—— positive 表示积极的,看成正例

N——negative 表示消极的,看成负例

我的理解:后面为预测结果,前面是预测结果的正确性。如:

T P—— 预测为 P (正例), 预测对了, 本来是正样本,检测为正样本(真阳性)。
T N—— 预测为 N (负例), 预测对了, 本来是负样本,检测为负样本(真阴性)。
F P—— 预测为 P (正例), 预测错了, 本来是负样本,检测为正样本(假阳性)。
F N—— 预测为 N (负例), 预测错了, 本来是正样本,检测为负样本(假阴性)。

TP+FP+TN+FN:样本总数。
TP+FN:实际正样本数。
TP+FP:预测结果为正样本的总数,包括预测正确的和错误的。
FP+TN:实际负样本数。
TN+FN:预测结果为负样本的总数,包括预测正确的和错误的

召回率(Recall):

表示的是样本中的正例有多少被预测正确了(找得全)所有正例中被正确预测出来的比例。Recall=\frac{\frac{TP}{}}{TP+FN}

精确率(Precision):

表示的是预测为正的样本中有多少是真正的正样本(找得对)。预测结果中真正的正例的比例。Precision=\frac{TP}{TP+FP}

准确率(Accuracy):

模型判断正确的数据(TP+TN)占总数据的比例
Acc=\frac{TP+TN}{TP+TN+FP+FN}

漏检率:

反映分类器或者模型正确预测负样本纯度的能力,减少将正样本预测为负样本,即正样本被预测为负样本占总的正样本的比例。值越小,性能越好

FNR=\frac{FN}{TP+FN}

误检率:

反映分类器或者模型正确预测正样本纯度的能力,减少将负样本预测为正样本,即负样本被预测为正样本占总的负样本的比例。值越小,性能越好

FPR=\frac{FP}{FP+TN}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/219961.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式——单例模式(创建型)

引言 单例模式是一种创建型设计模式, 让你能够保证一个类只有一个实例, 并提供一个访问该实例的全局节点。 问题 单例模式同时解决了两个问题, 所以违反了单一职责原则: 保证一个类只有一个实例。 为什么会有人想要控制一个类所…

基于C/C++的rapidxml加载xml大文件 - 下部分

下载地址: RapidXml (sourceforge.net)https://rapidxml.sourceforge.net/ 将源码添加到自己的工程中 示例测试大文件耗时: 总共293w行数据,大概耗时不到1s。

Unity_FairyGUI发布导入Unity编辑器资源报错

Unity_FairyGUI发布导入Unity编辑器资源报错 报错: FairyGUI: settings for Assets/UI/XMUI/XMSubway_atlas0.png is wrong! Correct values are: (Generate Mip Mapsunchecked) UnityEngine.Debug:LogWarning (object) FairyGUI.UIPackage:LoadAtlas (FairyGUI.P…

Vue运用之input本地上传文件,实现传参file:(binary)

前言 功能场景是,实现列表的【批量导入】的效果,在Excel里维护好信息,本地上传好文件,再点击【确认】触动接口,将flie信息传值后端接口。 html代码 input的type设置为file,支持格式设置为仅支持Excel类型 <div class="btn-box"><div class=&quo…

Weblogic-CVE-2023-21839

一、漏洞概述 RCE漏洞&#xff0c;该漏洞允许未经身份验证的远程&#xff0c;通过T3/IIOP协议网络访问并破坏WebLogic服务器&#xff0c;成功利用此漏洞可导致Oracle WebLogic服务器被接管&#xff0c;通过rmi/ldap远程协议进行远程命令执行,当 JDK 版本过低或本地存在小工具&…

SIEM 解决方案的不同部署方式,如何选择SIEM 解决方案

安全信息和事件管理&#xff08;SIEM&#xff09;作为一种网络安全解决方案&#xff0c;是多种技术的融合&#xff0c;这些技术结合了包括安全信息管理和安全事件管理在内的流程。简单来说&#xff0c;SIEM 解决方案是一种重要的安全工具&#xff0c;它收集、存储和分析来自整个…

ViTDet论文笔记

arxiv&#xff1a;https://arxiv.org/abs/2203.16527 GitHub&#xff1a;https://github.com/ViTAE-Transformer/ViTDet 摘要 本文提出使用plain&#xff0c;non-hierarchical视觉transformer作为目标检测的主干网络。通过这种设计可以使得ViT结构模型不需要再重新设计一个分…

【华为数据之道学习笔记】4-3信息架构建设核心要素:基于业务对象进行设计和落地

4.3.1 按业务对象进行架构设计 业务对象是指业务领域中重要的人、事、物对象。业务对象承载了业务运作和管理涉及的重要信息&#xff0c;是信息架构中最重要的管理要素。 业务对象同时还是业务和IT的关键连接点&#xff0c;也是实现IA&#xff08;信息架构&#xff09;、BA&…

centOS安装bochsXshell连接centos启动可视化界面

centOS安装bochs 参考&#xff1a;https://blog.csdn.net/muzi_since/article/details/102559187 首先安装依赖环境&#xff1a; yum install gtk2 gtk2-devel yum install libXt libXt-devel yum install libXpm libXpm-devel yum install SDL SDL-devel yum install libXr…

springCloud项目打包如何把jar发放到指定目录下

springCloud项目打包如何把jar发放到指定目录下 maven-antrun-plugin springCloud微服务打包jar&#xff0c;模块过多&#xff1b;我的项目模块结构如下&#xff1a; 我把实体类相关的单独抽离一个模块在service-api下服务单独写在service某块下&#xff0c; 每个模块的jar都…

【LeetCode刷题笔记(2)】【Python】【字母异位词分组】【中等】

字母异位词分组 题目描述 给定一个字符串数组strs&#xff0c;请你将字母异位词组合在一起。可以按任意顺序返回结果列表。 输入&#xff1a;字符串数组strs 输出&#xff1a;结果列表 字母异位词&#xff1a;由重新排列源单词的所有字母得到的一个新单词。 要求&#x…

湖仓一体架构理论与实践汇总

湖仓一体架构理论与实践汇总 软件研发本质上属于“手工业”。软件研发在很大程度上还是依赖于个人的能力。当软件规模较小时&#xff0c;依赖“手工业”可以解决问题&#xff0c;但是当软件规模大了之后再依赖“手工业”就不行了。 软件的复杂度包含两个层面&#xff1a;软件…

[论文精读] 使用扩散模型生成真实感视频 - 【李飞飞团队新作,文生视频 新基准】

论文导读: 论文背景:2023年12月11日&#xff0c;AI科学家李飞飞团队与谷歌合作&#xff0c;推出了视频生成模型W.A.L.T&#xff08;Window Attention Latent Transformer&#xff09;——一个在共享潜在空间中训练图像和视频生成的、基于Transformer架构的扩散模型。李飞飞是华…

【从零开始学习JVM | 第八篇】学习垃圾回收算法 和 垃圾回收器

前言&#xff1a; 现代编程语言通常采用垃圾回收机制来自动管理内存。垃圾回收机制是一种自动化的内存管理技术&#xff0c;可以在程序运行时自动识别和回收不再使用的内存&#xff0c;从而减少内存泄漏和其他内存相关问题的发生。 本文将介绍垃圾回收算法和垃圾回收器的相关…

跨品牌的手机要怎样相互投屏?iPhone和iPad怎么相互投屏?

选择买不同品牌的手机是基于品牌声誉、产品特点、价格和性价比等多个因素的综合考虑。每个人的需求和偏好不同&#xff0c;选择适合自己的手机品牌是一个个人化的决策。 一些品牌可能更加注重摄影功能&#xff0c;而其他品牌可能更加注重性能和速度。选择不同品牌的手机可以根据…

Reactor线程模型详解

文章目录 传统的阻塞式 I/OReactor 模式单 Reactor 单线程单Reactor多线程主从Reactor多线程 在目前的线程模型中一种是传统阻塞的I/O模型&#xff0c;一种是Reactor线程模型。 传统的阻塞式 I/O 为了同时处理多个客户端的请求&#xff0c;服务端为每一个连接都会分配一个新的…

设计模式——观察者模式(Observer Pattern)

概述 观察者模式是使用频率最高的设计模式之一&#xff0c;它用于建立一种对象与对象之间的依赖关系&#xff0c;一个对象发生改变时将自动通知其他对象&#xff0c;其他对象将相应作出反应。在观察者模式中&#xff0c;发生改变的对象称为观察目标&#xff0c;而被通知的对象称…

Git命令大全:从基础到高级应用

目录 一、增加/删除文件 1.1 添加文件到暂存区 1.2 添加所有文件到暂存区 1.3 从暂存区移除文件 1.4 从版本库和工作区删除文件 二、代码提交 2.1 提交暂存区文件到本地仓库 2.2 修改最后一次提交信息 三、本地分支 3.1 创建新分支 3.2 切换分支 3.3 创建并切换到新分支 3.4 删…

Postman-脚本自动化及定时执行脚本(7)

一.postman脚本自动化&#xff08;从postman至Newman可以一键执行脚本并生成报告&#xff1a;&#xff09; Postman Newman 是一个 CLI&#xff08;命令行界面&#xff09;工具&#xff0c;可以使用它来运行 Postman 中的集合&#xff08;Collection&#xff09;和环境&#xf…

音频DAC,ADC,CODEC的选型分析,高性能立体声

想要让模拟信号和数字信号顺利“交往”&#xff0c;就需要一座像“鹊桥”一样的中介&#xff0c;将两种不同的语言转变成统一的语言&#xff0c;消除无语言障碍。这座鹊桥就是转换器芯片&#xff0c;也就是ADC芯片。ADC芯片的全称是Analog-to-Digital Converter, 即模拟数字转换…