透析回溯的模板

关卡名

认识回溯思想

我会了✔️

内容

1.复习递归和N叉树,理解相关代码是如何实现的

✔️

2.理解回溯到底怎么回事

✔️

3.掌握如何使用回溯来解决二叉树的路径问题

✔️

回溯可以视为递归的拓展,很多思想和解法都与递归密切相关,在很多材料中都将回溯都与递归同时解释,例如本章2.1的路径问题就可以使用递归和回溯两种方法来解决。因此学习回溯时,我们对比递归来分析其特征会理解更深刻。
关于递归和回溯的区别,我们设想一个场景,某猛男想脱单,现在有两种策略:

  • 1.递归策略:先与意中人制造偶遇,然后了解人家的情况,然后约人家吃饭,有好感之后尝试拉人家的手,没有拒绝就表白。
  • 2.回溯策略:先统计周围所有的单身女孩,然后一个一个表白, 被拒绝就说“我喝醉了”,然后就当啥也没发生,继续找下一个。

其实回溯本质就这么个过程,请读者学习本章时认真揣摩这个过程。
回溯最大的好处是有非常明确的模板,所有的回溯都是一个大框架,因此透彻理解回溯的框架是解决一切回溯问题的基础。第一章我们只干一件事,那就是分析这个框架。
回溯不是万能的,而且能解决的问题也是非常明确的,例如组合、分割、子集、排列,棋盘等等,不过这些问题具体处理时又有很多不同,本章我们梳理了多个最为热门的问题来解释,请同学们认真对待。
回溯可以理解为递归的拓展,而代码结构又特别像深度遍历N叉树,因此只要知道递归,理解回溯并不难,难在很多人不理解为什么在递归语句之后要有个“撤销”的操作。 我们会通过图示轻松给你解释该问题。这里先假设一个场景,你谈了个新女朋友,来你家之前,你是否会将你前任的东西赶紧藏起来?回溯也一样,有些信息是前任的,要先处理掉才能重新开始。
回溯最让人激动的是有非常清晰的解题模板,如下所示,大部分的回溯代码框架都是这个样子,具体为什么这样子我们后面再解释。 

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择本层集合中元素(画成树,就是树节点孩子的大小)){处理节点;backtracking();回溯,撤销处理结果;}}

回溯是有明确的解题模板的,本章我们只干一件事——分析回溯的模板。

1 从N叉树说起

在解释回溯之前, 我们先看一下N叉树遍历的问题,我们知道在二叉树中,按照前序遍历的过程如下所示:

void treeDFS(TreeNode root) {if (root == null)return;System.out.println(root.val);treeDFS(root.left);treeDFS(root.right);  
}class TreeNode{int val;TreeNode left;TreeNode right;
}

假如我现在是一个三叉、四叉甚至N叉树该怎么办呢?很显然这时候就不能用left和right来表示分支了,使用一个List比较好,也就是这样子:

class TreeNode{int val;List<TreeNode> nodes;
}

遍历的代码:

public static void treeDFS(TreeNode root) {//递归必须要有终止条件if (root == null){return;}// 处理节点System.out.println(root.val);//通过循环,分别遍历N个子树for (int i = 1; i <= nodes.length; i++) {treeDFS("第i个子节点");}
}

 到这里,你有没有发现和上面说的回溯的模板非常像了?是的!非常像!既然很像,那说明两者一定存在某种关系。其他暂时不管,现在你只要先明白回溯的大框架就是遍历N叉树就行了。

2 为什么有的问题暴力搜索也不行

我们说回溯主要解决暴力枚举也解决不了的问题,什么问题这么神奇,暴力都搞不定?
看个例子:

LeetCode77 :给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。例如,输入n=4,k=2,则输出:
[[2,4], [3,4], [2,3], [1,2], [1,3], [1,4]]

 首先明确这个题是什么意思,如果n=4,k=2,那就是从4个数中选择2个,问你最后能选出多少组数据。
这个是高中数学中的一个内容,过程大致这样:如果n=4,那就是所有的数字为{1,2,3,4}

  • 1.先取一个1,则有[1,2],[1,3],[1,4]三种可能。
  • 2.然后取一个2,因为1已经取过了,不再取,则有[2,3],[2,4]两种可能。
  • 3.再取一个3,因为1和2都取过了,不再取,则有[3,4]一种可能。
  • 4.再取4,因为1,2,3都已经取过了,所以直接返回null。
  • 5.所以最终结果就是[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]。

这就是我们思考该问题的基本过程,写成代码也很容易,双层循环轻松搞定:

int n = 4;for (int i = 1; i <= n; i++) {for (int j = i + 1; j <= n; j++) {System.out.println(i + " " + j);}}

假如n和k都变大,比如n是200,k是3呢?也可以,三层循环基本搞定:

int n = 200;for (int i = 1; i <= n; i++) {for (int j = i + 1; j <= n; j++) {for (int u = j + 1; u <= n; n++) {System.out.println(i + " " + j + " " + u);}}

 如何这里的K是5呢?甚至是50呢?你需要套多少层循环?甚至告诉你K就是一个未知的正整数k,你怎么写循环呢?这时候已经无能为例了?所以暴力搜索就不行了。
这就是组合类型问题,除此之外子集、排列、切割、棋盘等方面都有类似的问题,因此我们要找更好的方式。

3 回溯=递归+局部枚举+放下前任

我们继续研究LeetCode77题,我们图示一下上面自己枚举所有答案的过程。
n=4时,我们可以选择的n有 {1,2,3,4}这四种情况,所以我们从第一层到第二层的分支有四个,分别表示可以取1,2,3,4。而且这里 从左向右取数,取过的数,不在重复取。 第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。
横向:

每次从集合中选取元素,可选择的范围会逐步收缩,到了取4时就直接为空了。
继续观察树结构,可以发现,图中每次访问到一次叶子节点(图中红框标记处),我们就找到了一个结果。虽然最后一个是空,但是不影响结果。这相当于只需要把从根节点开始每次选择的内容(分支)达到叶子节点时,将其收集起来就是想要的结果。
如果感觉不明显,我们再画一个n=5,k=3的例子:

从图中我们发现元素个数n相当于树的宽度(横向),而每个结果的元素个数k相当于树的深度(纵向)。所以我们说回溯算法就是一纵一横而已。再分析,我们还发现几个规律:
① 我们每次选择都是从类似{1,2,3,4},{1,2,3,4,5}这样的序列中一个个选的,这就是局部枚举,而且越往后枚举范围越小。
② 枚举时,我们就是简单的暴力测试而已,一个个验证,能否满足要求,从上图可以看到,这就是N叉树遍历的过程,因此两者代码也必然很像。
③ 我们再看上图中红色大框起来的部分,这个部分的执行过程与n=4,k=2的处理过程完全一致,很明显这是个可以递归的子结构。
这样我们就将回溯与N叉树的完美结合在一起了。
到此,还有一个大问题没有解决,回溯一般会有个手动撤销的操作,为什么要这样呢?继续观察纵横图:

我们可以看到,我们收集每个结果不是针对叶子结点的,而是针对树枝的,比如最上层我们首先选了1,下层如果选2,结果就是{1,2},如果下层选了3,结果就是{1,3},依次类推。现在的问题是当我们得到第一个结果{1,2}之后,怎么得到第二个结果{1,3}呢?
继续观察纵横图,可以看到,我可以在得到{1,2}之后将2撤掉,再继续取3,这样就得到了{1,3},同理可以得到{1,4},之后当前层就没有了,我们可以将1撤销,继续从最上层取2继续进行。
这里对应的代码操作就是先将第一个结果放在临时列表path里,得到第一个结果{1,2}之后就将path里的内容放进结果列表resultList中,之后,将path里的2撤销掉, 继续寻找下一个结果{1.3},然后继续将path放入resultLit,然后再撤销继续找。
现在明白为什么要手动撤销了吧,这个过程,我称之为"放下前任,继续前进",后面所有的回溯问题都是这样的思路。
这几条就是回溯的基本规律,明白之后,一切都变得豁然开朗。如果还是不太明白,我们下一小节用更完整的图示解释该过程。
到此我们就可以写出完整的回溯代码了:

public List<List<Integer>> combine(int n, int k) {List<List<Integer>> resultList = new ArrayList<>();if(k<=0 || n<k){return resultList;}// 用户返回结果Deque<Integer> path = new ArrayList<>();dfs(n,k,1,path,resultList);return resultList;
}
public void dfs(int n,int k,int startIndex,Deque path,List<List<Integer>> resultList){// 递归终止条件是:path 的长度等于 kif(path.size()==k){resultList.add(new ArrayList<>(path));return;}// 针对一个结点,遍历可能的搜索起点,其实就是枚举for(int i=startIndex;i<=n;i++){// 向路径变量里添加一个数,就是上图中的一个树枝的值path.addLast(i);// 搜索起点要加1是为了缩小范围,下一轮递归做准备,因为不允许出现重复的元素dfs(n,k,i+1,path,resultList);// 递归之后需要做相同操作的逆向操作,具体后面继续解释path.removeLast();}
}

 上面代码还有个问题要解释一下:startIndex和i是怎么变化的,为什么传给下一层时要加1。
我们可以看到在递归里有个循环

for (int i = startIndex; i <= n; i++) {dfs(n,k,i+1,path,res);}

这里的循环有什么作用呢?看一下图就知道了,这里其实就是枚举,第一次n=4,可以选择1 ,2,3,4四种情况,所以就有四个分支,for循环就会执行四次: 

 

而对于第二层第一个,选择了1之后,剩下的元素只有2 ,3, 4了,所以这时候for循环就执行3次,后面的则只有2次和1次。

4 图解为什么有个撤销的操作

如果你已经明白上面为什么会有撤销过程,这一小节就不必看了。如果还是不懂,本节就用更详细的图示带你看一下。 回溯最难理解的部分是这个回溯过程,而且这个过程即使调试也经常会晕:

path.addLast(i);

dfs(n, k, i + 1, path, res);

path.removeLast();

为什么要remove呢?看下图,当第一层取1时,最底层的边从左向右依次执行“取2”、“取3”和“取4”,而取3的时候,此时list里面存的是上一个结果<1,2>,所以必须提前将2撤销,这就path.removeLast();的作用。
用我们拆解递归的方法,将递归拆分成函数调用,输出第一条路径{1,2}的步骤如下如下:

 

我们在递归章节说过,递归是“不撞南墙不回头”,回溯也一样,接下来画代码的执行图详细看一下其过程,图中的手绘的序号是执行过程:

然后呢?{1,2}输出 之后会怎么执行呢?回归之后,假如我们将remove代码去掉,也就是这样子:

注意上面的4号位置结束之后,当前递归就结束了,然后返回到上一层继续执行for循环体,也就是上面的5。进入5之后,接着开始执行第6步:path.addLast(i)了,此时path的大小是3,元素是{1,2,3},为什么会这样呢?
因为path是一个全局的引用,各个递归函数共用的,所以当{1,2}处理完之后,2污染了path变量。我们希望将1保留而将2干掉,然后让3进来,这样才能得到{1,3},所以这时候需要手动remove一下。
同样3处理完之后,我们也不希望3污染接下来的{1,4},1全部走完之后也不希望1污染接下来的{2,3}等等,这就是为什么回溯里会在递归之后有一个remove撤销操作。

5 回溯热身—再论二叉树的路径问题

5.1 输出二叉树的所有路径

LeetCode257:给你一个二叉树的根节点root ,按任意顺序 ,返回所有从根节点到叶子节点的路径。
叶子节点是指没有子节点的节点。

示例:

输入:root = [1,2,3,null,5]

输出:["1->2->5","1->3"]

 

我们可以注意到有几个叶子节点,就有几条路径,那如何找叶子节点呢?我们知道深度优先搜索就是从根节点开始一直找到叶子结点,我们这里可以先判断当前节点是不是叶子结点,再决定是不是向下走,如果是叶子结点,我们就增加一条路径。
我们现在从回溯的角度来分析,得到第一条路径ABD之后怎么找到第二条路径ABE,这里很明显就是先将D撤销,然后再继续递归就可以了

 

class BinaryTreePaths {List<String> ans = new ArrayList<>();public List<String> binaryTreePaths(TreeNode root) {dfs(root,new ArrayList<>());return ans;}private void dfs(TreeNode root, List<Integer> temp){if(root==null){return;}temp.add(root.val);//如果是叶子节点记录结果if(root.left==null&&root.right==null){ans.add(getPathString(temp));}dfs(root.left,temp);dfs(root.right,temp);temp.remove(temp.size()-1);}//拼接结果private String getPathString(List<Integer> temp){StringBuilder sb = new StringBuilder();sb.append(temp.get(0));for(int i=1;i<temp.length();i++){sb.append("->").append(temp.get(i));}return sb.toString();}
}

5.2 路径总和问题 

同样的问题是LeetCode113题,给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。

示例1:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22

输出:[[5,4,11,2],[5,8,4,5]]

本题怎么做呢?我们直接观察题目给的示意图即可,要找的targetSum是22。我们发现根节点是5,因此只要从左侧或者右侧找到targetSum是17的即可。继续看左子树,我们发现值为4,那只要从node(4)的左右子树中找targetSum是13即可,依次类推,当我们到达node(11)时,我们需要再找和为2的子链路,显然此时node(7)已经超了,不是我们要的,此时就要将node(7)给移除掉,继续访问node(2).
同样在根结点的右侧,我们也要找总和为17的链路,方式与上面的一致。完整代码就是:

class PathSum {List<List<Integer>> res=new ArrayList<>();public List<List<Integer>> pathSum(TreeNode root, int targetSum) {LinkedList<Integer> path=new LinkedList<>();dfs(root,targetSum,path);return res;}public void dfs(TreeNode root,int targetSum,LinkedList<Integer> path){if(root==null){return;}//这个值有很关键的作用targetSum-=root.val;path.add(root.val);if(targetSum==0 && root.left==null && root.right==null){res.add(new LinkedList(path));}dfs(root.left,targetSum,path);dfs(root.right,targetSum,path);path.removeLast();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/219333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows 网络监控的内容和方式

Microsoft Windows是使用最广泛的操作系统之一&#xff0c;受到全球用户的青睐&#xff0c;Windows 设备与许多进程、服务和事件相关联&#xff0c;这些进程、服务和事件通常需要从单个控制台进行跟踪&#xff0c;这就是 Windows 网络监控工具派上用场的地方。Windows 网络监控…

项目总结-自主HTTP实现

终于是写完了&#xff0c;花费了2周时间&#xff0c;一点一点看&#xff0c;还没有扩展&#xff0c;但是基本功能是已经实现了。利用的是Tcp为网络链接&#xff0c;在其上面又写了http的壳。没有使用epoll&#xff0c;多路转接难度比较高&#xff0c;以后有机会再写&#xff0c…

一张图片组合一组动作就可以生成毫无违和感的视频!

你敢信&#xff0c;1张人物图片 1张动作动画&#xff0c;就可以生成一段视频。网友直呼&#xff1a;“主播/视频UP主可能快要下岗了&#xff01;” &#xff08;模型视频来源于网络&#xff09; 本周&#xff0c;字节跳动联合新加坡国立大学发布了一款开源项目 MagicAnimate&…

Linux Ubuntu 手动搭建webDav

1、安装 因为需要跟 zotero 进行交互&#xff0c;因此需要在服务器搭建一个webDav 以下是搭建步骤&#xff1a; sudo apt-get update sudo apt-get install apache2 Ubuntu 安装apache2来实现 不同于Centos 安装好了之后&#xff0c;运行 a2enmod dav_fs a2enmod dav 激…

【视频笔记】古人智慧与修行

古人的智慧 相由心生、老子悟道、佛祖成佛 多一些思考&#xff0c;多一些精神修炼。 除非我们今天能够产生与人类科技发展相并行的精神变革&#xff0c;否则永远可能也无法跳脱出历史的轮回。 视频来源 曾仕强教授周易的智慧 太极两仪四象八卦 一生二&#xff0c;二生三&…

大数据机器学习深度解读决策树算法:技术全解与案例实战

大数据机器学习深度解读决策树算法&#xff1a;技术全解与案例实战 本文深入探讨了机器学习中的决策树算法&#xff0c;从基础概念到高级研究进展&#xff0c;再到实战案例应用&#xff0c;全面解析了决策树的理论及其在现实世界问题中的实际效能。通过技术细节和案例实践&…

现代雷达车载应用——第2章 汽车雷达系统原理 2.5节 检测基础

经典著作&#xff0c;值得一读&#xff0c;英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 2.5 检测基础 对于要测试目标是否存在的雷达测量&#xff0c;可以假定下列两个假设之一为真&#xff1a; •H0:—测量结果仅为噪声。 •H1:—测量是噪…

eNSP小实验(vlan和单臂路由)

一.vlan的划分 实验目的&#xff1a; ①pc1 只可以和pc2通信&#xff0c;不可以和pc3 pc4通信 ②pc1和pc2只能到Server1&#xff0c;pc3和pc4到Server2 1.拓扑图 2.配置 PC1-4 同理配置 SW1 <Huawei> <Huawei>u t m //关闭注释 Info: …

Nginx的location匹配和rewrite重写

一、location匹配 常用的正则表达式 ^ &#xff1a;匹配输入字符串的起始位置 $ &#xff1a;匹配输入字符串的结束位置 * &#xff1a;匹配前面的字符零次或多次。如“ol*”能匹配“o”及“ol”、“oll”&#xff1a;匹配前面的字符一次或多次。如“ol”能匹配“ol”及“oll…

1.5万字 + 25张图盘点RocketMQ 11种消息类型,你知道几种?

本文是基于RocketMQ 4.9版本讲解 前置知识 为了帮助大家更好地理解这些消息底层的实现原理&#xff0c;这里我就通过三个问题来讲一讲RocketMQ最最基本的原理 1、生产者如何发送消息 在RocketMQ中有两个重要的角色 NameServer&#xff1a;就相当于一个注册中心 Broker&#xf…

批量生成标题文章:AI文章创作助力高效办公,提升办公效率

随着人工智能技术的不断发展&#xff0c;AI文章创作已经成为了高效办公的新趋势。这种技术可以快速生成高质量的文章&#xff0c;从而大大提高办公效率。相比传统的手写文章&#xff0c;AI文章创作具有更高的效率和准确性。在撰写文章时&#xff0c;往往要花费大量的时间和精力…

SpringBoot之视图渲染技术

前言 在Spring Boot中&#xff0c;视图渲染技术用于将动态数据渲染到用户界面&#xff0c;生成最终的HTML、XML、JSON等文档&#xff0c;以便将其返回给客户端浏览器 一.关于Freemarker 1.介绍 Freemarker是一个Java模板引擎&#xff0c;用于生成基于模板的动态内容。它是一…

有没有手机电脑同步的工作时间管理软件?

越来越多的职场人士感到每天的工作任务是比较多的&#xff0c;而工作时间又是有限的&#xff0c;所以经常时间不够用。因此&#xff0c;对于上班族来说&#xff0c;高效的时间管理是提高工作效率、按时完成任务的关键。为了满足这一需求&#xff0c;很多网友都在寻找一款既能在…

Leetcode 139.单词拆分

OJ链接 &#xff1a;139.单词拆分 代码&#xff1a; class Solution {public boolean wordBreak(String s, List<String> wordDict) {Set<String> set new HashSet<String>(wordDict);int n s.length();boolean[] dp new boolean[n1];dp[0] true;//初始…

Ant中a-select 下拉选择内容过多,滚动条,滚动定位偏移

1.绑定值为null,默认选项&#xff0c;会出现滚动问题&#xff0c;定位偏移&#xff0c;ant官网解释如下 getPopupContainer菜单渲染父节点。默认渲染到 body 上&#xff0c;如果你遇到菜单滚动定位问题&#xff0c;试试修改为滚动的区域&#xff0c;并相对其定位。Function(tr…

SpringBoot整合Kafka (一)

&#x1f4d1;前言 本文主要讲了SpringBoot整合Kafka文章⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x1f304;每日一句&#xff1a;努力一点&#xff0c;优秀一点 目录 文章目录 &…

【Python】计算最少排班人数(2)

接前一文章 部分关键代码及方法&#xff1a; 程序界面代码&#xff1a; winTk() win.config(bg#F2F2D7) win.geometry(550x440) win.title(最优排班计算器)frameFrame(win,width500,height60,bg#F2F2D7) frame.grid(row0,column0,columnspan5) l1Label(frame,text选择文件&a…

JetBrains2023年度报告,编程领域的风向标

前言 JetBrains是一家位于捷克的软件开发公司&#xff0c;有很多知名的开发IDE都是他们家的&#xff0c;比如IntelliJ IDEA、CLion、PyCharm、WebStorm等等&#xff0c;还有Kotlin编程语言也是JetBrains开发的&#xff0c;后来成为Android官方开发语言。 自2017年JetBrains发…

JVM之jmap java内存映射工具

jmap java内存映射工具 1、jmap jdk安装后会自带一些小工具&#xff0c;jmap命令(Memory Map for Java)是其中之一。主要用于打印指定Java进程(或核 心文件、远程调试服务器)的共享对象内存映射或堆内存细节。 jmap命令可以获得运行中的jvm的堆的快照&#xff0c;从而可以离…

使用 Timm 库替换 YOLOv8 主干网络 | 1000+ 主干融合YOLOv8

文章目录 前言版本差异说明替换方法parse_moedl( ) 方法_predict_once( ) 方法修改 yaml ,加载主干论文引用timm 是一个包含最先进计算机视觉模型、层、工具、优化器、调度器、数据加载器、数据增强和训练/评估脚本的库。 该库内置了 700 多个预训练模型,并且设计灵活易用。…