opencv 十五 红外图像中虹膜的提取

一、算法需求

在医疗检测中,需要使用红外相机拍摄眼睛照片,然后提取出虹膜的区域。在拍摄过程瞳孔需要进行运动,其通常不在正前方,无法形成圆形,不能使用常规的霍夫圆检测进行提取定位。且在在红外图像中,虹膜区域与巩膜区域差别不明显(具体如下图所示),故需要设计出算法提取红外图像中的虹膜区域。
在这里插入图片描述

1.1 眼睛结构说明

虹膜为圆盘状膜,中央有一黑孔称瞳孔,具体如下图所示。如果光线过强,虹膜内瞳孔括约肌收缩,则瞳孔缩小;光线变弱,虹膜开大肌收缩,瞳孔变大。
在这里插入图片描述

1.2 现有方法简述

通常使用霍夫圆检测实现瞳孔定位,具体实现效果如下所示。
在这里插入图片描述
其先通过二值化方法,获取瞳孔区域(包含闭运算操作,使瞳孔的圆闭合【瞳孔经常出现反光的情况】),最后在对瞳孔区域进行霍夫圆检测。

参考链接:https://blog.csdn.net/cungudafa/article/details/119726505

使用opencv的椭圆检测进行定位时发现以下情况,当瞳孔运动到眼球边缘时,其无法准确的检测到瞳孔(霍夫圆检测的黄色圆与瞳孔区域没有严格的贴合)。
在这里插入图片描述
使用椭圆拟合则可以准确的圈出瞳孔区域
在这里插入图片描述

二、问题分析

对现有的多个数据进行分析发现,眼球照片有以下特点:
1、在红外图像中虹膜与巩膜区域没有显著性差异性===》不可以使用现有虹膜提取方法
2、虹膜以瞳孔为中心,跟随瞳孔运动方向进行同步移动===》可以将虹膜提取转化为瞳孔提取

三、核心思路

1、读取图片为灰度图,并优化图像质量(使用滤波尽可能减少图像背景的复杂度)
2、对图像进行二值化(其可以根据调试效果设置二值化阈值,瞳孔区域与眼球其他区域存在显著的颜色差异)
3、对瞳孔区域进行优化(使用闭运算移除瞳孔中的反光区域)
4、获取图像中的轮廓,并进行椭圆拟合,并根据拟合结果排除错误的椭圆(根据拟合椭圆长轴与短轴值判定)
5、根据瞳孔与虹膜的半径比假定虹膜的椭圆轴长绘制椭圆mask,在原图中截取出虹膜区域。

四、具体实现

读取后的图片如下所示
在这里插入图片描述
进行二值化后得到以下图像,可以看到瞳孔中存在黑洞,其他区域存在白色干扰点。
在这里插入图片描述
先找到图像中最大面积的连通域,然后进行闭运算,最终得到的结果如下所示
在这里插入图片描述
然后获取轮廓并进行椭圆拟合,然后将拟合的椭圆绘制在原图与mask上(画在原图上的椭圆要使用原始值,而画在mask上的椭圆需要对长轴和短轴值进行放大,使其能尽可能的盖住虹膜区域)在这里插入图片描述
使用mask与原图进行与运算可以得到以下结果
在这里插入图片描述
根据连通域获取外接矩形,将虹膜区域裁剪出来得到以下图片
在这里插入图片描述

五、完整代码

完整代码如下所示

import numpy as np
import cv2
from matplotlib import pyplot as plt
import osdef find_topK_areo(img,k=1):ret,result=cv2.threshold(img,128,255,cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(result,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)#找到最大面积连通域areos=[]for i in range(len(contours)):area = cv2.contourArea(contours[i])areos.append({'area':area,'id':i})areos.sort(key=lambda x:x['area'],reverse=True)topk_areo=areos[:k]black=np.zeros(result.shape,np.uint8)for f in topk_areo:cv2.drawContours(black,contours,f['id'],(255,255,255),-1)return blackdef getHoughCircle(img):blur = cv2.GaussianBlur(img, (3, 3), 5) # 高斯模糊,给出高斯模糊矩阵和标准差gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)# 灰度化# 图像二值化,全局自适应阈值:对输入的单通道矩阵逐像素进行阈值分割#ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_TRIANGLE)ret,binary=cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY_INV)dst=find_topK_areo(binary,1)kernel=np.ones((3,3),np.uint8)dst_close=cv2.morphologyEx(dst, cv2.MORPH_CLOSE, kernel)cnt, hierarchy = cv2.findContours(dst_close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)print(len(cnt))  #   得到该图中总的轮廓数量mask= np.zeros(dst.shape, np.uint8 )#生成全黑的maskfor i in range(len(cnt)):# 椭圆拟合#(x, y)代表椭圆中心点的位置,(a, b)代表长短轴长度,应注意a、b为长短轴的直径,而非半径,angle 代表了中心旋转的角度ellipse= cv2.fitEllipse(cnt[i])(cx, cy), (a, b), angle=ellipseprint((cx, cy), (a, b), angle) #椭圆拟合结果有一些非瞳孔区域,需要跳过。经过观察,其a与b的值特别小if a+b<40:continue# 绘制椭圆,使用ellipse(img, ellipse,color, 2)方法,不要使用另外一种多参数的用法cv2.ellipse(img, ellipse,(0,0,255), 2)cv2.drawContours(img,cnt,i,(0,0,255),1)#将椭圆区域进行放大,使其转换虹膜的mask圆ellipse=((cx, cy), (a*2.5, b*2.5), angle)cv2.ellipse(mask, ellipse,(255,255,255), -1)res=cv2.bitwise_and(gray,mask) #与灰度图进行与运算,提取目标区域(虹膜)contours, _ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)for cont in contours:# 外接矩形x, y, w, h = cv2.boundingRect(cont)#裁剪出椭圆区域crop=res[y:y+h,x:x+w]return crop if __name__=="__main__":path = 'vedio/tor3.avi/'crop1=getHoughCircle(cv2.imread(path+'tor3.avi1.jpg',1))cv2.imshow('crop',crop1)cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/218864.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将输入的字符串反向输出(c语言)

#include<stdio.h> #include<string.h> int main() {int i, j, k;char s[50], temp;gets(s);//输入k strlen(s);//计算字符的长度//反向输出for (i 0, j k - 1;i < k / 2;i, j--){temp s[i];s[i] s[j];s[j] temp;}puts(s);//输出 }

最近面试了一位5年的测试,一问三不知,还反怼我...

最近看了很多简历&#xff0c;很多候选人年限不小&#xff0c;但是做的都是一些非常传统的项目&#xff0c;想着也不能通过简历就直接否定一个人&#xff0c;何况现在大环境越来 越难&#xff0c;大家找工作也不容易&#xff0c;于是就打算见一见。 在沟通中发现&#xff0c;由…

GB28181学习(十八)——图像抓拍

前言 本文主要介绍图像抓拍功能&#xff0c;通过自研的sip库&#xff08;mysipsdk.dll&#xff09;对接真实设备&#xff0c;使用http方式实现图像数据传输&#xff0c;最终达到图像抓拍与保存的目的。 基本要求 图像格式宜使用JPEG&#xff1b;图像分辨率宜采用与主码流相同…

linux ksm实现与代码简述

KSM 全称是 Kernel Samepage Merging&#xff0c;表示相同的物理页只映射一份拷贝。 原理 在ksm初始化时&#xff08;ksm_init&#xff09;&#xff0c;注册了一个ksm_scan_thread线程&#xff0c;这个线程的核心入口是ksm_do_scan。当对一个进程第一次通过madvice(MADV_MERGE…

Linux高级管理-基于域名的虚拟Web主机搭建

客服机限制地址 通过 Require 配置项&#xff0c;可以根据主机的主机名或P地址来决定是否允许客户端访问。在httpd服 务器的主配置文件的<Location>&#xff0c;<Directory>、<Files>、<Limit>配置段中均可以使用Require 配置 项来控制客户端的访问。使…

Java基础:如何创建多层文件夹

一、单层多个 代码实现如下&#xff1a; public class Main {public static void main(String[] args) {//在D盘中创建File file new File("D:"File.separator"docum");file.mkdir();//在D盘中的docum目录中创建file new File("D:\\docum" Fi…

kafka 详细介绍

目录 前言 分布式架构&#xff1a; 消息发布-订阅模型&#xff1a; 持久性存储&#xff1a; 分区和副本&#xff1a; 水平扩展&#xff1a; 高性能&#xff1a; 生态系统&#xff1a; 我的其他博客 前言 Kafka 是由 Apache 软件基金会开发的一种开源流处理平台&#xf…

微信小程序自定义提示框组件并使用插槽 tooltip

创建tooltip组件引用 创建一个自定义组件&#xff0c;例如命名为 tooltip tooltip.wxml&#xff1a;用于定义组件的结构&#xff1b; <!--components/tooltip/tooltip.wxml--> <view class"tooltip-wrapper" hidden"{{hidden}}" style"lef…

纺织辅料小程序商城制作全攻略

随着互联网的普及和移动支付的便捷性&#xff0c;越来越多的消费者喜欢在线购物&#xff0c;尤其是购买纺织辅料这类产品。为了满足消费者的需求&#xff0c;纺织辅料企业或商家需要制作一个专业的小程序商城&#xff0c;以便更好地展示和销售自己的产品。本文将详细介绍如何制…

Fine-Grained Semantically Aligned Vision-Language Pre-Training细粒度语义对齐的视觉语言预训练

abstract 大规模的视觉语言预训练在广泛的下游任务中显示出令人印象深刻的进展。现有方法主要通过图像和文本的全局表示的相似性或对图像和文本特征的高级跨模态关注来模拟跨模态对齐。然而&#xff0c;他们未能明确学习视觉区域和文本短语之间的细粒度语义对齐&#xff0c;因为…

Java开发环境简介(JDK、JRE、JVM)

目录 1、Java开发环境 2、JDK和JRE 3、JDK下载和安装 3.1 下载 3.2 安装 3.3 配置path环境变量 JDK8配置方案1&#xff1a;只配置path ⭐JDK8配置方案2&#xff1a;配置JAVA_HOMEpath&#xff08;推荐&#xff09; path配置小结 JDK17配置方案&#xff1a;自动配置 …

redis-学习笔记(Jedis 前置知识)

自定义的 Redis 客户端 咱们可以实现编写出一个自定义的 Redis 客户端 因为 Redis 公开了自己使用的自定义协议 ---- RESP 协议清楚了, 那么通信数据格式就清除了, 就能完成各层次之间的数据传输, 就能开发服务器和客户端 RESP — Redis 的 序列化 协议 特点: 简单好实现快读进…

AC修炼计划(AtCoder Beginner Contest 332)

传送门&#xff1a;AtCoder Beginner Contest 332 - AtCoder a,b,c都还是很基础了。d题是一个bfs的纯暴力问题。 E - Lucky bag 看看范围&#xff0c;n15&#xff0c;第一个想法是dfs纯暴力&#xff0c;但所有的情况太大&#xff0c;各种决策层出不穷&#xff0c;会t。所以转…

RocketMQ可视化工具 打包遇到的yarn intall 问题

文章目录 RocketMQ可视化工具1.github上下载2.修改参数3.运行4.打包5.出错6.解决7.重试8.再解决9.很奇怪运行没错&#xff0c;但是测试错啦10.不想深究&#xff0c;直接跳过测试11.展示成功 RocketMQ可视化工具 1.github上下载 下载地址 https://github.com/apache/rocketmq-…

redis:二、缓存击穿的定义、解决方案(互斥锁、逻辑过期)的优缺点和适用场景、面试回答模板

缓存击穿的定义 缓存击穿是一种现象&#xff0c;具体就是某一个数据过期时&#xff0c;恰好有大量的并发请求过来&#xff0c;这些并发的请求可能会瞬间把DB压垮。典型场景就是双十一等抢购活动中&#xff0c;首页广告页面的数据过期&#xff0c;此时刚好大量用户进行请求&…

Unity 置顶OpenFileDialog文件选择框

置顶文件选择框 &#x1f32d;处理前&#x1f959;处理后 &#x1f32d;处理前 &#x1f959;处理后 解决方案

【TI毫米波雷达入门-10】TI毫米波速度检测思路

知识回顾 FMCW chirp 雷达收发流程 中频信号 傅里叶变换 多目标检测 距离分辨率 最大距离 公式总结 FMCW数据处理流程示例 两个维度看图表 从range维度&#xff0c;水平方向上&#xff0c;反映每个chirp 发出的FMCW被接收天线检测到&#xff0c;2个点的目标&#xff0c;对应两个…

滑动窗口如人生,回顾往事不复还———力扣刷题

第一题&#xff1a;长度最小的子数组 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 思路&#xff1a; 第一想法肯定时暴力枚举&#xff0c;枚举数组任何一个元素&#xff0c;把他当起始位置&#xff0c;然后从起始位置找最短区间&#xff0c;使得…

uniapp原生插件之安卓app添加到其他应用打开原生插件

插件介绍 安卓app添加到其他应用打开原生插件&#xff0c;接收分享的文本和文件&#xff0c;支持获取和清空剪切板内容 插件地址 安卓app添加到其他应用打开原生插件&#xff0c;支持获取剪切板内容 - DCloud 插件市场 超级福利 uniapp 插件购买超级福利 详细使用文档 u…

Nyquist Theorem(取样定理)

取样定理&#xff0c;又称为奈奎斯特定理&#xff08;Nyquist Theorem&#xff09;&#xff0c;是信号处理领域中一项至关重要的基本原理。它规定了对于连续时间信号&#xff0c;为了能够完全准确地还原出原始信号&#xff0c;即使是在离散时间下进行采样和再构建&#xff0c;都…