代码随想录算法训练营第50天| 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

JAVA代码编写

123.买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。   注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。   因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

输入:prices = [1]
输出:0

提示:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 105

教程:https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html

方法一:动态规划

思路:

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

1.确定dp数组以及下标的含义

一天一共就有五个状态,

0没有操作 (其实我们也可以不设置这个状态)
1第一次持有股票
2第一次不持有股票
3第二次持有股票
4第二次不持有股票

dp[i] [j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i] [j]表示第i天状态j所剩最大现金。

需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?

一定是选最大的,所以 dp[i] [1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

同理可推出剩下状态部分:

dp[i] [3] = max(dp[i - 1] [3], dp[i - 1] [2] - prices[i]);

dp[i] [4] = max(dp[i - 1] [4], dp[i - 1] [3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

同理第二次卖出初始化dp[0] [4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

123.买卖股票的最佳时机III

复杂度分析

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
class Solution {public int maxProfit(int[] prices) {int len = prices.length;// 边界判断, 题目中 length >= 1, 所以可省去if (prices.length == 0) return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[len - 1] [4];}
}

188.买卖股票的最佳时机IV

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

教程:https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html

方法一:动态规划

**思路:**在123.买卖股票的最佳时机III的基础上,增加了进行k笔交易的限制

1.定义数组

一天一共就有五个状态,

0没有操作 (其实我们也可以不设置这个状态)
1第一次持有股票
2第一次不持有股票
3第二次持有股票
4第二次不持有股票
2k-1第k次持有股票
2k第k次不持有股票

dp[i] [j]中 i表示第i天,j为 [0 - 2k] (2k+1)个状态,dp[i] [j]表示第i天状态j所剩最大现金。

需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?

一定是选最大的,所以 dp[i] [1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

同理可推出剩下状态部分:

for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

所以同理可以推出dp[0] [j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

4.确定遍历顺序:从前向后遍历

5.举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

188.买卖股票的最佳时机IV

复杂度分析

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度:O(n)
class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];// dp数组的初始化, 与版本一同理for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/218273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HDPE硅芯管材具有优异的耐腐蚀性、耐磨损性和耐老化性

HDPE硅芯管材作为一种优质的管道材料&#xff0c;具有许多突出的性能。其中&#xff0c;其优异的耐腐蚀性、耐磨损性和耐老化性是其主要特点之一。 首先&#xff0c;HDPE硅芯管材具有出色的耐腐蚀性。它的高密度聚乙烯&#xff08;HDPE&#xff09;材料具有良好的耐腐蚀性能&a…

2023快速上手新红利项目:短剧分销推广CPS

短剧分销推广CPS是一个新红利项目&#xff0c;对于新手小白来说也可以快速上手。 以下是一些建议&#xff0c;帮助新手小白更好地进行短剧分销推广CPS&#xff1a; 学习基础知识&#xff1a;了解短剧的基本概念、制作流程和推广方式。了解短剧的市场需求和受众群体&#xff0c…

STM32F030C8读取CS1237采集模拟

STM32F030C8读取CS1237采集模拟 Chapter1 【问题解决记录】STM32F030C8读取CS1237采集模拟问题描述原因分析&#xff1a;解决方案&#xff1a; Chapter2 CS1237 STM32控制程序以及原理图需要注意事项 Chapter1 【问题解决记录】STM32F030C8读取CS1237采集模拟 原文链接&#x…

【技术分享】常见VLAN部署方式

VLAN部署方式&#xff1a; 第一种End-to-End VLAN&#xff08;端到端VLAN&#xff09; 全局部署的VLAN&#xff0c;VLAN信息可以扩展到整个网络&#xff08;换句话说就是每台交换机上VLAN信息一致&#xff09; 将用户分组到与物理位置无关的VLAN中&#xff1b;如果用户在园区…

第7章:深度剖析知识图谱中的知识推理:方法与应用探究

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

《算法通关村——回溯模板如何解决回溯问题》

《算法通关村——回溯模板如何解决回溯问题》 93. 复原 IP 地址 有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 之间组成&#xff0c;且不能含有前导 0&#xff09;&#xff0c;整数之间用 . 分隔。 例如&#xff1a;"0.1.2.201" 和 "192.1…

【活动回顾】ABeam News | 兰州大学外国语学院回访ABeam 旗下德硕管理咨询(上海),持续推进远景合作

访企拓岗深入调研 持续推进远景合作 继11月上旬ABeam旗下艾宾信息技术开发&#xff08;西安&#xff09;团队一行拜访兰州大学并举行隆重的校企签约仪式后&#xff0c;近日兰州大学一行领导也如约莅临德硕管理咨询&#xff08;上海&#xff09;有限公司开展拓岗调研。 深化…

线上业务优化之案例实战

本文是我从业多年开发生涯中针对线上业务的处理经验总结而来&#xff0c;这些业务或多或少相信大家都遇到过&#xff0c;因此在这里分享给大家&#xff0c;大家也可以看看是不是遇到过类似场景。本文大纲如下&#xff0c; 后台上传文件 线上后台项目有一个消息推送的功能&#…

实物+3D动画展示离心式过滤器的工作原理 #雨水收集#雨水过滤

产品规格型号 规格型号&#xff1a;LLLXGL-100、LLLXGL-150、LLLXGL-200、LLLXGL-300

第一届古剑山ctf-pwn全部题解

1. choice 附件&#xff1a; https://github.com/chounana/ctf/blob/main/2023%E7%AC%AC%E4%B8%80%E5%B1%8A%E5%8F%A4%E5%89%91%E5%B1%B1pwn/choice.zip 漏洞代码&#xff1a; 漏洞成因&#xff1a; byte_804A04C输入的长度可以覆盖nbytes的值&#xff0c;导致后面输入时存…

RFID复习内容整理

第一章 日常生活中的RFID技术 身份证&#xff08;高频&#xff09; typeB13.56MHz 一卡通&#xff08;高频&#xff09; ISO/IEC 14443 typeA 图书馆门禁停车场门票ETC 微波段、超高频 服装快销品牌 物联网定义 最初的定义 将各种信息传感设备&#xff0c;如射频识别(RFID)…

会JSX没什么了不起,你了解过 StyleX 么?

近日&#xff0c;Meta开源了一款CSS-in-JS库 —— StyleX。看命名方式&#xff0c;Style - X是不是有点像JS - X&#xff0c;他们有关系么&#xff1f;当然有。 JSX是一种用JS描述HTML的语法规范&#xff0c;广泛应用于前端框架中&#xff08;比如React、SolidJS...&#xff0…

公众号怎么提高2个限制

一般可以申请多少个公众号&#xff1f;许多用户在申请公众号时可能会遇到“公众号显示主体已达上限”的问题。这是因为在2018年11月16日对公众号申请数量进行了调整&#xff0c;具体调整如下&#xff1a;1、个人主体申请公众号数量上限从2个调整为1个。2、企业主体申请公众号数…

【LeetCode:2697. 字典序最小回文串 | 双指针 + 贪心】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

静态HTTP应用:理解其工作原理与优势

随着互联网的普及和发展&#xff0c;Web应用已经成为人们日常生活和工作中不可或缺的一部分。而静态HTTP应用作为Web应用的一种重要形式&#xff0c;也越来越受到开发者的青睐。本文将带你了解静态HTTP应用的工作原理和优势&#xff0c;让你更好地理解这种应用形式。 一、静态…

binlog+mysqldump恢复数据(误删数据库或者表)

表删除恢复 1、准备数据 首先准备数据库环境&#xff0c;测试数据库为speech1&#xff0c;如下&#xff1a; 为test数据表添加3条记录&#xff0c;如下&#xff1a;三行为新加的记录&#xff0c;添加后将test表删除。 2、恢复数据 查看binlog日志状态 SHOW MASTER STATUS…

多线程案例-定时器(附完整代码)

定时器是什么 定时器是软件开发中的一个重要组件.类似于一个"闹钟".达到一个设定的时间之后,就执行某个指定好的代码. 定时器是一种实际开发中非常常用的组件. 比如网络通信种,如果对方500ms内没有返回数据,则断开尝试重连. 比如一个Map,希望里面的某个key在3s之后过…

uniapp+vite+ts+express踩坑总结

1 关于引入express包报 import express from "express"; ^^^^^^ SyntaxError: Cannot use import statement outside a module的问题。 解决方案&#xff1a; 在package.json中添加type&#xff1a;“module”选项 2 Response is a type and must be imported …

c语言 词法分析器 《编译原理》课程设计

设计、编制并调试一个词法分析程序&#xff0c;加深对词法分析原理的理解。 针对表达各类词语的一组正规表达式&#xff0c;设计一个确定化的最简的有限自动机&#xff0c;对输入的符号串进行单词划分及词类识别。 要求词法分析器的输入是字符串&#xff0c;输出是源程序中各…

安装odoo17 Windows版时,PostgreSQL Database无法被勾选

安装odoo17 Windows版时&#xff0c;PostgreSQL Database无法被勾选。 出现的原因是&#xff0c;曾经安装过PostgreSQL Database&#xff1b;虽然可能已被卸载&#xff0c;但注册表内还有残余信息&#xff0c;导致odoo认为PostgreSQL Database仍存在于系统之中。 解决方案 删…