机器学习---Adaboost算法

1. Adaboost算法介绍

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然

后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。Adaboost算法本身是通

过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类

的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每

次得到的分类器最后融合起来,作为最后的决策分类器。

目前,对Adaboost算法的研究以及应用大多集中于分类问题,同时近年也出现了一些在回归问题

上的应用。就其应用adaboost系列主要解决了:两类问题、多类单标签问题、多类多标签问题、大

类单标签问题,回归问题。它用全部的训练样本进行学习。使用adaboost分类器可以排除一些不必

要的训练数据特征,并将关键放在关键的训练数据上面。

该算法其实是一个简单的弱分类算法提升过程,这个过程通过不断的训练,可以提高对数据的分类

能力。

①先通过对N个训练样本的学习得到第一个弱分类器;

②将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第

二个弱分类器;

③将1和2都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学

习得到第三个弱分类器

④最终经过提升的强分类器。即某个数据被分为哪一类要通过......的多数表决。

对于boosting算法,存在两个问题:   

①如何调整训练集,使得在训练集上训练的弱分类器得以进行;   

②如何将训练得到的各个弱分类器联合起来形成强分类器。

针对以上两个问题,AdaBoost算法进行了调整:

①使用加权后选取的训练数据代替随机选取的训练样本,这样将训练的焦点集中在比较难分的训练

数据样本上;   

②将弱分类器联合起来,使用加权的投票机制代替平均投票机制。让分类效果好的弱分类器具有较

大的权重,而分类效果差的分类器具有较小的权重。 

与Boosting算法不同的是,AdaBoost算法不需要预先知道弱学习算法学习正确率的下限即弱分类

器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖

掘弱分类器算法的能力。 

AdaBoost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应

的权重是相同的,即其中n为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样

本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突显出来,从

而得到一个新的样本分布。在新的样本分布下,再次对样本进行训练,得到弱分类器。依次类推,

经过T次循环,得到T个弱分类器,把这T个弱分类器按一定的权重叠加(boost)起来,得到最终

想要的强分类器。  

AdaBoost算法的具体步骤如下:   

①给定训练样本集S,其中X和Y分别对应于正例样本和负例样本;T为训练的最大循环次数;

②初始化样本权重为1/n ,即为训练样本的初始概率分布;   

③第一次迭代:(1)训练样本的概率分布相当,训练弱分类器;(2)计算弱分类器的错误率;(3)选取合

适阈值,使得误差最小;(4)更新样本权重;经T次循环后,得到T个弱分类器,按更新的权重叠

加,最终得到的强分类器。   

Adaboost算法是经过调整的Boosting算法,其能够对弱学习得到的弱分类器的错误进行适应性

(Adaptive)调整。上述算法中迭代了T次的主循环,每一次循环根据当前的权重分布对样本x定一个

分布P,然后对这个分布下的样本使用弱学习算法得到一个弱分类器,对于这个算法定义的弱学习

算法,对所有的样本都有错误率,而这个错误率的上限并不需要事先知道,实际上。每一次迭代,

都要对权重进行更新。更新的规则是:减小弱分类器分类效果较好的数据的概率,增大弱分类器分

类效果较差的数据的概率。最终的分类器是个弱分类器的加权平均。 

2. Adaboosting训练过程  

基于AdaBoost算法的强分类器训练

输入:(1)训练样本集

其中,y =-1,训练样本xi为负样本,y =+1,训练样本xi为正样本

(2)弱分类器的学习算法L

(3)弱分类器的数目M

输出:一个由M个弱分类器构成的强分类器

训练过程:

①初始化训练样本xi权重若正负样本数目一致,则

若正负样本数目分别为N+,N-,则

②for m=1,...,M

训练弱分类器估计弱分类器fm(x)的分类错误率em,如:

(3)估计弱分类器fm(x)的权重

(4)基于弱分类器fm(x)调整各样本权重,并归一化调整:

归一化:,强分类器

算法实现:

3. Adaboost算法例子

 

 

 

 

 

 

 

3. Adaboost算法计算案例

①初始化训练数据权重相等,训练第⼀个学习器。该假设每个训练样本在基分类器的学习中作用相

同,这⼀假设可以保证第⼀步能够在原始数据上学习基本分类器H1 (x)。

②AdaBoost反复学习基本分类器,在每⼀轮m = 1, 2, ..., M顺次的执⾏下列操作:

在权值分布为D的训练数据上,确定基分类器;

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:

将下⼀轮学习器的注意⼒集中在错误数据上,重复执⾏上述计算步骤m次;

③对m个学习器进⾏加权投票:

给定下⾯这张训练数据表所示的数据,假设弱分类器由xv产生,其阈值v使该分类器在训练数据集

上的分类误差率最低,试用Adaboost算法学习⼀个强分类器:

问题解答:

①初始化训练数据权重相等,训练第⼀个学习器:

②AdaBoost反复学习基本分类器,在每⼀轮m = 1, 2, ..., M顺次的执⾏下列操作:

当m=1的时候:在权值分布为D的训练数据上,阈值v取2.5时分类误差率最低,故基本分类器为:

(6,7,8被分错)

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:

根据下公式,计算各个权重值:

经计算得,D2的值为:

计算过程:

分类器H1(x)在训练数据集上有3个误分类点。

当m=2的时候:

在权值分布为D 的训练数据上,阈值v取8.5时分类误差率最低,故基本分类器为:

(3,4,5被分错)

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:经计算得,D 的值为:

分类器H2(x)在训练数据集上有3个误分类点。

当m=3的时候:

在权值分布为D 的训练数据上,阈值v取5.5时分类误差率最低,故基本分类器为:

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:经计算得,D4的值为:

分类器H3(x)在训练数据集上的误分类点个数为0。

③对m个学习器进行加权投票,获取最终分类器:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/217623.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt 线程

💡 进度条显示拷贝进度(verson 1) 窗口上放置一个按钮和一个进度条部件,点击按钮,进行拷贝操作 —— 打开对话框选择源文件,然后再打开一个对话框 选择 目标文件存放位置和名称。拷贝过程中进度条显示当前…

十三、YARN资源分配调用

1、为什么要先学习YARN组件? 在Hadoop文件系统中,YARN作为Hadoop系统的第三大组件,其中,第二大组件MapReduce组件是基于YARN运行的,即没有YARN无法运行MapReduce程序,所以需要同时学习YARN。 2、YARN &…

Day58力扣打卡

打卡记录 下一个更大元素 IV&#xff08;单调栈 x2&#xff09; 链接 class Solution:def secondGreaterElement(self, nums: List[int]) -> List[int]:ans [-1] * len(nums)s []t []for i, x in enumerate(nums):while t and nums[t[-1]] < x:ans[t.pop()] x # t…

『npm』一条命令快速配置npm淘宝国内镜像

&#x1f4e3;读完这篇文章里你能收获到 一条命令快速切换至淘宝镜像恢复官方镜像 文章目录 一、设置淘宝镜像源二、恢复官方镜像源三、查看当前使用的镜像 一、设置淘宝镜像源 npm config set registry https://registry.npm.taobao.org服务器建议全局设置 sudo npm config…

科技提升安全,基于YOLOv6开发构建商超扶梯场景下行人安全行为姿态检测识别系统

在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题&#xff0c;随着AI技术的快速发展与不断普及&#xff0c;越来越多的商超、地铁等场景开始加装专用的安全检测预警系统&#xff0c;核心工作原理即使AI模型与摄像头图像视频流的实时计算&#xf…

没有明确的报错信息,阿里云国际版Windows服务器无法远程连接

在远程连接失败时&#xff0c;如果您没有收到系统返回的报错信息&#xff0c;并且ECS实例是运行中的状态&#xff0c;然后再根据以下步骤进行排查&#xff1a; 步骤一&#xff1a;使用阿里云Workbench工具测试远程登录 步骤二&#xff1a;检查是否有收到黑洞通知 步骤三&…

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现BWO-CNN-B…

蓝牙在物联网中的应用,相比WIFI和NFC的优势?

蓝牙在物联网中有着广泛的应用&#xff0c;主要包括以下几个方面&#xff1a; 1、智能家居&#xff1a;蓝牙Mesh技术可以用于智能家居设备之间的连接和通信&#xff0c;实现设备的远程控制和管理。例如&#xff0c;通过蓝牙技术可以将智能音箱、智能电视、智能家电等设备连接起…

算法:多数元素(排序和Boyer Moore投票算法)

排序 时间复杂度 O(nlog⁡n) 空间复杂度 O(log⁡n) /*** param {number[]} nums* return {number}*/ var majorityElement function (nums) {nums nums.sort()// 排序之后数组中间的数一定是众数&#xff08;因为题目说数组中的众数大于 ⌊nums.length/2⌋&#xff09;retur…

Vue3-03-reactive() 响应式基本使用

reactive() 的简介 reactive() 是vue3 中进行响应式状态声明的另一种方式&#xff1b; 但是&#xff0c;它只能声明 【对象类型】的响应式变量&#xff0c;【不支持声明基本数据类型】。reactive() 与 ref() 一样&#xff0c;都是深度响应式的&#xff0c;即对象嵌套属性发生了…

HarmonyOS首次尝试-HelloWorld

我的旧手机是个HUAWEI PCT-AL10 HarmonyOS 3.0.0(Android 10) 插上后&#xff0c;studio能显示连接上了手机设备&#xff0c;创建的demo使用的是API9&#xff0c;也就是当前的最新版本。 点击运行报错&#xff1a; 点击去往帮助页&#xff0c;做的也挺好&#xff0c;有直达的…

Redis第1讲——入门简介

Java并发编程的总结和学习算是告一段落了&#xff0c;这段时间思来想去&#xff0c;还是决定把Redis再巩固和学习一下。毕竟Redis不论是在面试还是实际应用中都是极其重要的&#xff0c;在面试中诸如Redis的缓存问题、热key、大key、过期策略、持久化机制等&#xff1b;还有在实…

最新UI酒桌喝酒游戏小程序源码,直接上传源码到开发者端即可,带流量主

源码介绍&#xff1a; 2023最新UI酒桌喝酒游戏小程序源码 娱乐小程序源码 带流量主.修改增加了广告位&#xff0c;直接上传源码到开发者端即可。 通过后改广告代码&#xff0c;然后关闭广告展示提交&#xff0c;通过后打开即可。无广告引流。 流量主版本的&#xff08;配合流…

深度解读 Cascades 查询优化器

数据库中查询优化器是数据库的核心组件&#xff0c;其决定着 SQL 查询的性能。Cascades 优化器是 Goetz 在 volcano optimizer generator 的基础上优化之后诞生的一个搜索框架。 本期技术贴将带大家了解 Cascades 查询优化器。首先介绍 SQL 查询优化器&#xff0c;接着分析查询…

CentOS 7 源码部署 Nginx

文章目录 1. 概述2. 部署示例2.1 下载和解压 Nginx 源码2.2 安装编译依赖包2.3 编译和安装2.4 启动 Nginx2.5 配置防火墙2.6 设置 Nginx 为系统服务2.7 配置访问 3. 扩展知识 1. 概述 Nginx 是一款高性能的开源 Web 服务器软件&#xff0c;广泛应用于互联网领域。本篇博客将介…

【日积月累】Spring中的AOP与IOC相关问题详解

Spring中的AOP与IOC 1.前言2.Spring AOP&#xff08;面向切面编程&#xff09;2.1 AOP的实现过程2.2 AOP代理模式的类型2.2.1JDK的动态代理2.2.2CGLIB的动态代理 2.3AOP应用常见场景2.3.1日志记录 2.4对AOP的理解 3.Spring IOC&#xff08;Inversion of Control&#xff0c;控…

29、Windows安全配置

文章目录 一、Windows安全配置简介二、账户策略2.1 密码策略2.2 账户锁定策略 三、本地策略3.1 用户权限分配 四、安全设置4.1 账户4.2 审核4.3 设备4.4交互式登录4.5 网络访问4.6 网络安全4.7 用户账户控制4.8 防火墙配置 五、高级审核策略设置5.1 账户登录5.2 账户管理5.3 对…

架构设计系列之基础:基础理论(一)

在软件开发和软件架构领域&#xff0c;深厚的理论基础是构建高质量、可维护、可扩展系统的关键&#xff0c;本部分内容将围绕这些基础理论展开。&#xff08;本部分内容介绍第一部分&#xff1a;编程三范式、架构设计原则、软件设计七原则&#xff09; 一、编程三范式 编程范…

112. 路径总和(Java)

目录 解法&#xff1a; 官方解法&#xff1a; 方法一&#xff1a;广度优先搜索 思路及算法 复杂度分析 时间复杂度&#xff1a; 空间复杂度&#xff1a; 方法二&#xff1a;递归 思路及算法 复杂度分析 时间复杂度&#xff1a; 空间复杂度&#xff1a; 给你二叉树的…

(C++)最大连续1的个数--滑动窗口

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://le…