【机器学习】Classification using Logistic Regression

Classification using Logistic Regression

    • 1. 分类问题
    • 2. 线性回归方法
    • 3. 逻辑函数(sigmod)
    • 4.逻辑回归
    • 5. 决策边界
      • 5.1 数据集
      • 5.2 数据绘图
      • 5.3 逻辑回归与决策边界的刷新
      • 5.4 绘制决策边界
    • 附录

导入所需的库

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import dlc, plot_data, draw_vthresh, sigmoid
from plt_one_addpt_onclick import plt_one_addpt_onclick
plt.style.use('./deeplearning.mplstyle')

1. 分类问题

分类问题的例子包括:将电子邮件识别为垃圾邮件或非垃圾邮件,或者确定肿瘤是恶性还是良性。这些都是二分类的例子,其中有两种可能的结果。结果可以用 ‘positive’/‘negative’ 成对描述,如’yes’/'no, ‘true’/‘false’ 或者 ‘1’/‘0’.

分类数据集的绘图通常使用符号来表示示例的结果。在下图中,“X”表示positive值,而“O”表示negative值。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])
X_train2 = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train2 = np.array([0, 0, 0, 1, 1, 1])
pos = y_train == 1
neg = y_train == 0fig,ax = plt.subplots(1,2,figsize=(8,3))
#plot 1, single variable
ax[0].scatter(x_train[pos], y_train[pos], marker='x', s=80, c = 'red', label="y=1")
ax[0].scatter(x_train[neg], y_train[neg], marker='o', s=100, label="y=0", facecolors='none', edgecolors=dlc["dlblue"],lw=3)ax[0].set_ylim(-0.08,1.1)
ax[0].set_ylabel('y', fontsize=12)
ax[0].set_xlabel('x', fontsize=12)
ax[0].set_title('one variable plot')
ax[0].legend()#plot 2, two variables
plot_data(X_train2, y_train2, ax[1])
ax[1].axis([0, 4, 0, 4])
ax[1].set_ylabel('$x_1$', fontsize=12)
ax[1].set_xlabel('$x_0$', fontsize=12)
ax[1].set_title('two variable plot')
ax[1].legend()
plt.tight_layout()
plt.show()

在这里插入图片描述
由上图可以看到,在单变量图中,positive显示为红色,y=1;negative显示为蓝色,y=0。在线性回归中,y的值不局限于两个值,可以是任意值。在多变量图中,同样地,positive显示为红色,negative显示为蓝色。在具有多个变量的线性回归的情况下,y不会被限制为两个值,类似的图将是三维的。

2. 线性回归方法

这里,我们使用前面介绍的线性回归模型根据肿瘤大小预测肿瘤是良性还是恶性。

w_in = np.zeros((1))
b_in = 0
plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=False)

在这里插入图片描述
其中,阈值为0.5

现在,在大肿瘤大小范围(接近10)的最右侧添加更多的“恶性”数据点,并重新运行线性回归。
在这里插入图片描述
该模型预测了更大的肿瘤,但x=3的数据点被错误地预测了。

上面的例子表明,线性模型不足以对分类数据进行建模。

3. 逻辑函数(sigmod)

sigmod函数公式表示为:
g ( z ) = 1 1 + e − z (1) g(z) = \frac{1}{1+e^{-z}} \tag{1} g(z)=1+ez1(1)
其中, z z z 是sigmod函数的输入,一个线性回归模型的输出。在单变量线性回归中,它是标量;在多变量线性回归中,它可能是包含 m m m个值的向量。

sigmoid函数的实现如下:

def sigmoid(z):"""Compute the sigmoid of zArgs:z (ndarray): A scalar, numpy array of any size.Returns:g (ndarray): sigmoid(z), with the same shape as z"""g = 1/(1+np.exp(-z))return g

对于输入变量 z z z,输出结果为:

# Generate an array of evenly spaced values between -10 and 10
z_tmp = np.arange(-10,11)# Use the function implemented above to get the sigmoid values
y = sigmoid(z_tmp)# Code for pretty printing the two arrays next to each other
np.set_printoptions(precision=3) 
print("Input (z), Output (sigmoid(z))")
print(np.c_[z_tmp, y])

在这里插入图片描述
左边是输入z,右边是输出sigmod(z).输入值的范围从-10到10,输出值的范围从0到1.

对结果进行可视化:

# Plot z vs sigmoid(z)
fig,ax = plt.subplots(1,1,figsize=(5,3))
ax.plot(z_tmp, y, c="b")ax.set_title("Sigmoid function")
ax.set_ylabel('sigmoid(z)')
ax.set_xlabel('z')
draw_vthresh(ax,0)

在这里插入图片描述
从图中可以看出,sigmod函数在z取小负数时趋近于0,在z取大正数时趋近于1.

4.逻辑回归

逻辑回归模型将sigmod函数应用到线性回归模型中,如下所示:
f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) (2) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b ) \tag{2} fw,b(x(i))=g(wx(i)+b)(2)
其中,
g ( z ) = 1 1 + e − z (3) g(z) = \frac{1}{1+e^{-z}}\tag{3} g(z)=1+ez1(3)

将逻辑回归应用到肿瘤分类的例子中。

首先,加载样例和初始化参数。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])w_in = np.zeros((1))
b_in = 0
plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=True)

在这里插入图片描述
其中,橘黄色线是 z z z 或者 w ⋅ x ( i ) + b \mathbf{w} \cdot \mathbf{x}^{(i)} + b wx(i)+b ,阈值为0.5

现在,在大肿瘤大小范围(接近10)中添加更多的数据点,并重新运行。
在这里插入图片描述
与线性回归模型不同,该模型继续做出正确的预测。

5. 决策边界

5.1 数据集

X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y = np.array([0, 0, 0, 1, 1, 1]).reshape(-1,1) 

5.2 数据绘图

fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X, y, ax)ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('$x_1$')
ax.set_xlabel('$x_0$')
plt.show()

在这里插入图片描述

我们要根据数据集训练一个逻辑回归模型,其公式为: f ( x ) = g ( w 0 x 0 + w 1 x 1 + b ) f(x) = g(w_0x_0+w_1x_1 + b) f(x)=g(w0x0+w1x1+b),其中 g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1, 训练好模型得到参数 b = − 3 , w 0 = 1 , w 1 = 1 b = -3, w_0 = 1, w_1 = 1 b=3,w0=1,w1=1. 即 f ( x ) = g ( x 0 + x 1 − 3 ) f(x) = g(x_0+x_1-3) f(x)=g(x0+x13)。下面通过绘制决策边界来了解这个经过训练的模型在预测什么。

5.3 逻辑回归与决策边界的刷新

逻辑回归模型表示为:
f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) (1) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \tag{1} fw,b(x(i))=g(wx(i)+b)(1)

其中, g ( z ) g(z) g(z) 是 sigmoid 函数,它可以将所有值映射到0到1之间:
g ( z ) = 1 1 + e − z (2) g(z) = \frac{1}{1+e^{-z}}\tag{2} g(z)=1+ez1(2)
w ⋅ x \mathbf{w} \cdot \mathbf{x} wx 是向量点积运算:
w ⋅ x = w 0 x 0 + w 1 x 1 \mathbf{w} \cdot \mathbf{x} = w_0 x_0 + w_1 x_1 wx=w0x0+w1x1

  • 我们把模型的输出( f w , b ( x ) f_{\mathbf{w},b}(x) fw,b(x)) 解释为给定 x x x 并由 w w w b b b参数化的 y = 1 y=1 y=1 的概率.

  • 这样, 为了从逻辑回归模型中获得最终预测 ( y = 0 y=0 y=0 or y = 1 y=1 y=1) , 使用以下启发式:
    if f w , b ( x ) > = 0.5 f_{\mathbf{w},b}(x) >= 0.5 fw,b(x)>=0.5, predict y = 1 y=1 y=1
    if f w , b ( x ) < 0.5 f_{\mathbf{w},b}(x) < 0.5 fw,b(x)<0.5, predict y = 0 y=0 y=0

  • 绘制sigmoid 函数来看看哪里 g ( z ) > = 0.5 g(z) >= 0.5 g(z)>=0.5

# Plot sigmoid(z) over a range of values from -10 to 10
z = np.arange(-10,11)fig,ax = plt.subplots(1,1,figsize=(5,3))
# Plot z vs sigmoid(z)
ax.plot(z, sigmoid(z), c="b")ax.set_title("Sigmoid function")
ax.set_ylabel('sigmoid(z)')
ax.set_xlabel('z')
draw_vthresh(ax,0)

在这里插入图片描述

  • 如图所示,当 z > = 0 z >=0 z>=0 时, g ( z ) > = 0.5 g(z) >= 0.5 g(z)>=0.5

  • 对于逻辑回归模型, z = w ⋅ x + b z = \mathbf{w} \cdot \mathbf{x} + b z=wx+b. 因此,

    if w ⋅ x + b > = 0 \mathbf{w} \cdot \mathbf{x} + b >= 0 wx+b>=0, 模型预测 y = 1 y=1 y=1

    if w ⋅ x + b < 0 \mathbf{w} \cdot \mathbf{x} + b < 0 wx+b<0, 模型预测 y = 0 y=0 y=0

5.4 绘制决策边界

现在,我们回到例子中理解逻辑回归模型是如何预测的.

  • 我们的逻辑回归模型为:
    f ( x ) = g ( − 3 + x 0 + x 1 ) f(x) = g(-3 + x_0+x_1) f(x)=g(3+x0+x1)
  • 从上面所讲,可以知道 if − 3 + x 0 + x 1 > = 0 -3 + x_0+x_1 >= 0 3+x0+x1>=0,模型预测 y = 1 y=1 y=1

通过绘图来可视化。从绘制 − 3 + x 0 + x 1 = 0 -3+x_0+x_1=0 3+x0+x1=0开始,这相当于 x 1 = 3 − x 0 x_1=3-x_0 x1=3x0

# Choose values between 0 and 6
x0 = np.arange(0,6)x1 = 3 - x0
fig,ax = plt.subplots(1,1,figsize=(5,4))
# Plot the decision boundary
ax.plot(x0,x1, c="b")
ax.axis([0, 4, 0, 3.5])# Fill the region below the line
ax.fill_between(x0,x1, alpha=0.2)# Plot the original data
plot_data(X,y,ax)
ax.set_ylabel(r'$x_1$')
ax.set_xlabel(r'$x_0$')
plt.show()

在这里插入图片描述

  • 在上图中,蓝线表示 x 0 + x 1 − 3 = 0 x_0+x_1-3=0 x0+x13=0,它应该在3处与 x 1 x_1 x1轴相交(如果我们设置 x 1 x_1 x1=3, x 0 x_0 x0=0),并且在3处相交 x 0 x_0 x0轴(如果我们将 x 1 x_1 x1设置为0, x 0 x_0 x0=3)。

  • 阴影区域表示 − 3 + x 0 + x 1 < 0 -3+x_0+x_1<0 3+x0+x1<0。该线上方的区域为 − 3 + x 0 + x 1 > 0 -3+x_0+x_1>0 3+x0+x1>0

  • 阴影区域(线下)中的任何点都被分类为 y = 0 y=0 y=0。该线上或上方的任何点都被分类为 y = 1 y=1 y=1。这条线被称为“决策边界”。

通过使用高阶多项式项(例如: f ( x ) = g ( x 0 2 + x 1 − 1 ) f(x) = g( x_0^2 + x_1 -1) f(x)=g(x02+x11)),我们可以得出更复杂的非线性边界。

附录

lab_utils_common.py 源码:

"""
lab_utils_commoncontains common routines and variable definitionsused by all the labs in this week.by contrast, specific, large plotting routines will be in separate filesand are generally imported into the week where they are used.those files will import this file
"""
import copy
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import FancyArrowPatch
from ipywidgets import Outputnp.set_printoptions(precision=2)dlc = dict(dlblue = '#0096ff', dlorange = '#FF9300', dldarkred='#C00000', dlmagenta='#FF40FF', dlpurple='#7030A0')
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'
dlcolors = [dlblue, dlorange, dldarkred, dlmagenta, dlpurple]
plt.style.use('./deeplearning.mplstyle')def sigmoid(z):"""Compute the sigmoid of zParameters----------z : array_likeA scalar or numpy array of any size.Returns-------g : array_likesigmoid(z)"""z = np.clip( z, -500, 500 )           # protect against overflowg = 1.0/(1.0+np.exp(-z))return g##########################################################
# Regression Routines
##########################################################def predict_logistic(X, w, b):""" performs prediction """return sigmoid(X @ w + b)def predict_linear(X, w, b):""" performs prediction """return X @ w + bdef compute_cost_logistic(X, y, w, b, lambda_=0, safe=False):"""Computes cost using logistic loss, non-matrix versionArgs:X (ndarray): Shape (m,n)  matrix of examples with n featuresy (ndarray): Shape (m,)   target valuesw (ndarray): Shape (n,)   parameters for predictionb (scalar):               parameter  for predictionlambda_ : (scalar, float) Controls amount of regularization, 0 = no regularizationsafe : (boolean)          True-selects under/overflow safe algorithmReturns:cost (scalar): cost"""m,n = X.shapecost = 0.0for i in range(m):z_i    = np.dot(X[i],w) + b                                             #(n,)(n,) or (n,) ()if safe:  #avoids overflowscost += -(y[i] * z_i ) + log_1pexp(z_i)else:f_wb_i = sigmoid(z_i)                                                   #(n,)cost  += -y[i] * np.log(f_wb_i) - (1 - y[i]) * np.log(1 - f_wb_i)       # scalarcost = cost/mreg_cost = 0if lambda_ != 0:for j in range(n):reg_cost += (w[j]**2)                                               # scalarreg_cost = (lambda_/(2*m))*reg_costreturn cost + reg_costdef log_1pexp(x, maximum=20):''' approximate log(1+exp^x)https://stats.stackexchange.com/questions/475589/numerical-computation-of-cross-entropy-in-practiceArgs:x   : (ndarray Shape (n,1) or (n,)  inputout : (ndarray Shape matches x      output ~= np.log(1+exp(x))'''out  = np.zeros_like(x,dtype=float)i    = x <= maximumni   = np.logical_not(i)out[i]  = np.log(1 + np.exp(x[i]))out[ni] = x[ni]return outdef compute_cost_matrix(X, y, w, b, logistic=False, lambda_=0, safe=True):"""Computes the cost using  using matricesArgs:X : (ndarray, Shape (m,n))          matrix of examplesy : (ndarray  Shape (m,) or (m,1))  target value of each examplew : (ndarray  Shape (n,) or (n,1))  Values of parameter(s) of the modelb : (scalar )                       Values of parameter of the modelverbose : (Boolean) If true, print out intermediate value f_wbReturns:total_cost: (scalar)                cost"""m = X.shape[0]y = y.reshape(-1,1)             # ensure 2Dw = w.reshape(-1,1)             # ensure 2Dif logistic:if safe:  #safe from overflowz = X @ w + b                                                           #(m,n)(n,1)=(m,1)cost = -(y * z) + log_1pexp(z)cost = np.sum(cost)/m                                                   # (scalar)else:f    = sigmoid(X @ w + b)                                               # (m,n)(n,1) = (m,1)cost = (1/m)*(np.dot(-y.T, np.log(f)) - np.dot((1-y).T, np.log(1-f)))   # (1,m)(m,1) = (1,1)cost = cost[0,0]                                                        # scalarelse:f    = X @ w + b                                                        # (m,n)(n,1) = (m,1)cost = (1/(2*m)) * np.sum((f - y)**2)                                   # scalarreg_cost = (lambda_/(2*m)) * np.sum(w**2)                                   # scalartotal_cost = cost + reg_cost                                                # scalarreturn total_cost                                                           # scalardef compute_gradient_matrix(X, y, w, b, logistic=False, lambda_=0):"""Computes the gradient using matricesArgs:X : (ndarray, Shape (m,n))          matrix of examplesy : (ndarray  Shape (m,) or (m,1))  target value of each examplew : (ndarray  Shape (n,) or (n,1))  Values of parameters of the modelb : (scalar )                       Values of parameter of the modellogistic: (boolean)                 linear if false, logistic if truelambda_:  (float)                   applies regularization if non-zeroReturnsdj_dw: (array_like Shape (n,1))     The gradient of the cost w.r.t. the parameters wdj_db: (scalar)                     The gradient of the cost w.r.t. the parameter b"""m = X.shape[0]y = y.reshape(-1,1)             # ensure 2Dw = w.reshape(-1,1)             # ensure 2Df_wb  = sigmoid( X @ w + b ) if logistic else  X @ w + b      # (m,n)(n,1) = (m,1)err   = f_wb - y                                              # (m,1)dj_dw = (1/m) * (X.T @ err)                                   # (n,m)(m,1) = (n,1)dj_db = (1/m) * np.sum(err)                                   # scalardj_dw += (lambda_/m) * w        # regularize                  # (n,1)return dj_db, dj_dw                                           # scalar, (n,1)def gradient_descent(X, y, w_in, b_in, alpha, num_iters, logistic=False, lambda_=0, verbose=True):"""Performs batch gradient descent to learn theta. Updates theta by takingnum_iters gradient steps with learning rate alphaArgs:X (ndarray):    Shape (m,n)         matrix of examplesy (ndarray):    Shape (m,) or (m,1) target value of each examplew_in (ndarray): Shape (n,) or (n,1) Initial values of parameters of the modelb_in (scalar):                      Initial value of parameter of the modellogistic: (boolean)                 linear if false, logistic if truelambda_:  (float)                   applies regularization if non-zeroalpha (float):                      Learning ratenum_iters (int):                    number of iterations to run gradient descentReturns:w (ndarray): Shape (n,) or (n,1)    Updated values of parameters; matches incoming shapeb (scalar):                         Updated value of parameter"""# An array to store cost J and w's at each iteration primarily for graphing laterJ_history = []w = copy.deepcopy(w_in)  #avoid modifying global w within functionb = b_inw = w.reshape(-1,1)      #prep for matrix operationsy = y.reshape(-1,1)for i in range(num_iters):# Calculate the gradient and update the parametersdj_db,dj_dw = compute_gradient_matrix(X, y, w, b, logistic, lambda_)# Update Parameters using w, b, alpha and gradientw = w - alpha * dj_dwb = b - alpha * dj_db# Save cost J at each iterationif i<100000:      # prevent resource exhaustionJ_history.append( compute_cost_matrix(X, y, w, b, logistic, lambda_) )# Print cost every at intervals 10 times or as many iterations if < 10if i% math.ceil(num_iters / 10) == 0:if verbose: print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")return w.reshape(w_in.shape), b, J_history  #return final w,b and J history for graphingdef zscore_normalize_features(X):"""computes  X, zcore normalized by columnArgs:X (ndarray): Shape (m,n) input data, m examples, n featuresReturns:X_norm (ndarray): Shape (m,n)  input normalized by columnmu (ndarray):     Shape (n,)   mean of each featuresigma (ndarray):  Shape (n,)   standard deviation of each feature"""# find the mean of each column/featuremu     = np.mean(X, axis=0)                 # mu will have shape (n,)# find the standard deviation of each column/featuresigma  = np.std(X, axis=0)                  # sigma will have shape (n,)# element-wise, subtract mu for that column from each example, divide by std for that columnX_norm = (X - mu) / sigmareturn X_norm, mu, sigma#check our work
#from sklearn.preprocessing import scale
#scale(X_orig, axis=0, with_mean=True, with_std=True, copy=True)######################################################
# Common Plotting Routines
######################################################def plot_data(X, y, ax, pos_label="y=1", neg_label="y=0", s=80, loc='best' ):""" plots logistic data with two axis """# Find Indices of Positive and Negative Examplespos = y == 1neg = y == 0pos = pos.reshape(-1,)  #work with 1D or 1D y vectorsneg = neg.reshape(-1,)# Plot examplesax.scatter(X[pos, 0], X[pos, 1], marker='x', s=s, c = 'red', label=pos_label)ax.scatter(X[neg, 0], X[neg, 1], marker='o', s=s, label=neg_label, facecolors='none', edgecolors=dlblue, lw=3)ax.legend(loc=loc)ax.figure.canvas.toolbar_visible = Falseax.figure.canvas.header_visible = Falseax.figure.canvas.footer_visible = Falsedef plt_tumor_data(x, y, ax):""" plots tumor data on one axis """pos = y == 1neg = y == 0ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none', edgecolors=dlblue,lw=3)ax.set_ylim(-0.175,1.1)ax.set_ylabel('y')ax.set_xlabel('Tumor Size')ax.set_title("Logistic Regression on Categorical Data")ax.figure.canvas.toolbar_visible = Falseax.figure.canvas.header_visible = Falseax.figure.canvas.footer_visible = False# Draws a threshold at 0.5
def draw_vthresh(ax,x):""" draws a threshold """ylim = ax.get_ylim()xlim = ax.get_xlim()ax.fill_between([xlim[0], x], [ylim[1], ylim[1]], alpha=0.2, color=dlblue)ax.fill_between([x, xlim[1]], [ylim[1], ylim[1]], alpha=0.2, color=dldarkred)ax.annotate("z >= 0", xy= [x,0.5], xycoords='data',xytext=[30,5],textcoords='offset points')d = FancyArrowPatch(posA=(x, 0.5), posB=(x+3, 0.5), color=dldarkred,arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)ax.add_artist(d)ax.annotate("z < 0", xy= [x,0.5], xycoords='data',xytext=[-50,5],textcoords='offset points', ha='left')f = FancyArrowPatch(posA=(x, 0.5), posB=(x-3, 0.5), color=dlblue,arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)ax.add_artist(f)

plt_one_addpt_onclick.py 源码:

import time
import copy
from ipywidgets import Output
from matplotlib.widgets import Button, CheckButtons
from matplotlib.patches import FancyArrowPatch
from lab_utils_common import np, plt, dlblue, dlorange, sigmoid, dldarkred, gradient_descent# for debug
#output = Output() # sends hidden error messages to display when using widgets
#display(output)class plt_one_addpt_onclick:""" class to run one interactive plot """def __init__(self, x, y, w, b, logistic=True):self.logistic=logisticpos = y == 1neg = y == 0fig,ax = plt.subplots(1,1,figsize=(8,4))fig.canvas.toolbar_visible = Falsefig.canvas.header_visible = Falsefig.canvas.footer_visible = Falseplt.subplots_adjust(bottom=0.25)ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none', edgecolors=dlblue,lw=3)ax.set_ylim(-0.05,1.1)xlim = ax.get_xlim()ax.set_xlim(xlim[0],xlim[1]*2)ax.set_ylabel('y')ax.set_xlabel('Tumor Size')self.alegend = ax.legend(loc='lower right')if self.logistic:ax.set_title("Example of Logistic Regression on Categorical Data")else:ax.set_title("Example of Linear Regression on Categorical Data")ax.text(0.65,0.8,"[Click to add data points]", size=10, transform=ax.transAxes)axcalc   = plt.axes([0.1, 0.05, 0.38, 0.075])  #l,b,w,haxthresh = plt.axes([0.5, 0.05, 0.38, 0.075])  #l,b,w,hself.tlist = []self.fig = figself.ax = [ax,axcalc,axthresh]self.x = xself.y = yself.w = copy.deepcopy(w)self.b = bf_wb = np.matmul(self.x.reshape(-1,1), self.w) + self.bif self.logistic:self.aline = self.ax[0].plot(self.x, sigmoid(f_wb), color=dlblue)self.bline = self.ax[0].plot(self.x, f_wb, color=dlorange,lw=1)else:self.aline = self.ax[0].plot(self.x, sigmoid(f_wb), color=dlblue)self.cid = fig.canvas.mpl_connect('button_press_event', self.add_data)if self.logistic:self.bcalc = Button(axcalc, 'Run Logistic Regression (click)', color=dlblue)self.bcalc.on_clicked(self.calc_logistic)else:self.bcalc = Button(axcalc, 'Run Linear Regression (click)', color=dlblue)self.bcalc.on_clicked(self.calc_linear)self.bthresh = CheckButtons(axthresh, ('Toggle 0.5 threshold (after regression)',))self.bthresh.on_clicked(self.thresh)self.resize_sq(self.bthresh)#   @output.capture()  # debugdef add_data(self, event):#self.ax[0].text(0.1,0.1, f"in onclick")if event.inaxes == self.ax[0]:x_coord = event.xdatay_coord = event.ydataif y_coord > 0.5:self.ax[0].scatter(x_coord, 1, marker='x', s=80, c = 'red' )self.y = np.append(self.y,1)else:self.ax[0].scatter(x_coord, 0, marker='o', s=100, facecolors='none', edgecolors=dlblue,lw=3)self.y = np.append(self.y,0)self.x = np.append(self.x,x_coord)self.fig.canvas.draw()#   @output.capture()  # debugdef calc_linear(self, event):if self.bthresh.get_status()[0]:self.remove_thresh()for it in [1,1,1,1,1,2,4,8,16,32,64,128,256]:self.w, self.b, _ = gradient_descent(self.x.reshape(-1,1), self.y.reshape(-1,1),self.w.reshape(-1,1), self.b, 0.01, it,logistic=False, lambda_=0, verbose=False)self.aline[0].remove()self.alegend.remove()y_hat = np.matmul(self.x.reshape(-1,1), self.w) + self.bself.aline = self.ax[0].plot(self.x, y_hat, color=dlblue,label=f"y = {np.squeeze(self.w):0.2f}x+({self.b:0.2f})")self.alegend = self.ax[0].legend(loc='lower right')time.sleep(0.3)self.fig.canvas.draw()if self.bthresh.get_status()[0]:self.draw_thresh()self.fig.canvas.draw()def calc_logistic(self, event):if self.bthresh.get_status()[0]:self.remove_thresh()for it in [1, 8,16,32,64,128,256,512,1024,2048,4096]:self.w, self.b, _ = gradient_descent(self.x.reshape(-1,1), self.y.reshape(-1,1),self.w.reshape(-1,1), self.b, 0.1, it,logistic=True, lambda_=0, verbose=False)self.aline[0].remove()self.bline[0].remove()self.alegend.remove()xlim  = self.ax[0].get_xlim()x_hat = np.linspace(*xlim, 30)y_hat = sigmoid(np.matmul(x_hat.reshape(-1,1), self.w) + self.b)self.aline = self.ax[0].plot(x_hat, y_hat, color=dlblue,label="y = sigmoid(z)")f_wb = np.matmul(x_hat.reshape(-1,1), self.w) + self.bself.bline = self.ax[0].plot(x_hat, f_wb, color=dlorange, lw=1,label=f"z = {np.squeeze(self.w):0.2f}x+({self.b:0.2f})")self.alegend = self.ax[0].legend(loc='lower right')time.sleep(0.3)self.fig.canvas.draw()if self.bthresh.get_status()[0]:self.draw_thresh()self.fig.canvas.draw()def thresh(self, event):if self.bthresh.get_status()[0]:#plt.figtext(0,0, f"in thresh {self.bthresh.get_status()}")self.draw_thresh()else:#plt.figtext(0,0.3, f"in thresh {self.bthresh.get_status()}")self.remove_thresh()def draw_thresh(self):ws = np.squeeze(self.w)xp5 = -self.b/ws if self.logistic else (0.5 - self.b) / wsylim = self.ax[0].get_ylim()xlim = self.ax[0].get_xlim()a = self.ax[0].fill_between([xlim[0], xp5], [ylim[1], ylim[1]], alpha=0.2, color=dlblue)b = self.ax[0].fill_between([xp5, xlim[1]], [ylim[1], ylim[1]], alpha=0.2, color=dldarkred)c = self.ax[0].annotate("Malignant", xy= [xp5,0.5], xycoords='data',xytext=[30,5],textcoords='offset points')d = FancyArrowPatch(posA=(xp5, 0.5), posB=(xp5+1.5, 0.5), color=dldarkred,arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)self.ax[0].add_artist(d)e = self.ax[0].annotate("Benign", xy= [xp5,0.5], xycoords='data',xytext=[-70,5],textcoords='offset points', ha='left')f = FancyArrowPatch(posA=(xp5, 0.5), posB=(xp5-1.5, 0.5), color=dlblue,arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)self.ax[0].add_artist(f)self.tlist = [a,b,c,d,e,f]self.fig.canvas.draw()def remove_thresh(self):#plt.figtext(0.5,0.0, f"rem thresh {self.bthresh.get_status()}")for artist in self.tlist:artist.remove()self.fig.canvas.draw()def resize_sq(self, bcid):""" resizes the check box """#future reference#print(f"width  : {bcid.rectangles[0].get_width()}")#print(f"height : {bcid.rectangles[0].get_height()}")#print(f"xy     : {bcid.rectangles[0].get_xy()}")#print(f"bb     : {bcid.rectangles[0].get_bbox()}")#print(f"points : {bcid.rectangles[0].get_bbox().get_points()}")  #[[xmin,ymin],[xmax,ymax]]h = bcid.rectangles[0].get_height()bcid.rectangles[0].set_height(3*h)ymax = bcid.rectangles[0].get_bbox().y1ymin = bcid.rectangles[0].get_bbox().y0bcid.lines[0][0].set_ydata([ymax,ymin])bcid.lines[0][1].set_ydata([ymin,ymax])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/21749.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“RISC-V成长日记” blog发布,第一个运行在RISC-V服务器上的blog?

尽管推特、公众号、微博、抖音等社交平台风靡一时&#xff0c;但blog&#xff08;博客&#xff09;在全世界依然经久不衰&#xff0c;尤其是在技术领域。对于博主而言&#xff0c;博客是他们独立创作的天地&#xff0c;可以随时更新内容和故事&#xff0c;确保素材的时效性。此…

SpringBoot根据注解动态执行类中的方法

1、需求 有一个接口提供了xx的服务&#xff0c;有两个场景分别实现了xx的具体逻辑&#xff0c;标记为xx1和xx2。 然后场景一过来的时候执行xx1逻辑&#xff0c;场景二过来的时候执行xx2逻辑。 2、简单实现 定义一个service层&#xff0c;提供xx的接口。 然后定义两个servi…

渗透-02:HTTPS主干-分支和HTTPS传输过程

一、HTTPS主干-分支 第一层 第一层&#xff0c;是主干的主干&#xff0c;加密通信就是双方都持有一个对称加密的秘钥&#xff0c;然后就可以安全通信了。 问题就是&#xff0c;无论这个最初的秘钥是由客户端传给服务端&#xff0c;还是服务端传给客户端&#xff0c;都是明文传输…

Junit单元测试

测试分类 黑盒测试 &#xff1a;不关注代码&#xff0c;只关注输入值之后输出的值是否符合预期。白盒测试&#xff1a;关注代码&#xff0c;需要关注程序具体的执行流程。 Junit单元测试就是白盒测试的一种 Junit使用流程 定义一个测试类&#xff0c;命名为被测试的类名Test …

学习率Learn_rate是什么(深度学习)

学习率是指在训练神经网络时用于调整参数的步进大小&#xff0c;它决定了每次梯度更新时参数的调整程度。学习率的选择直接关系到模型的性能和训练过程的效果。 学习率变化可能带来的影响&#xff1a; 收敛速度&#xff1a;较高的学习率可以加快模型的收敛速度&#xff0c;因为…

IDEA项目实践——创建Java项目以及创建Maven项目案例、使用数据库连接池创建项目简介

系列文章目录 IDEA上面书写wordcount的Scala文件具体操作 IDEA创建项目的操作步骤以及在虚拟机里面创建Scala的项目简单介绍 目录 系列文章目录 前言 一 准备工作 1.1 安装Maven 1.1.1 Maven安装配置步骤 1.1.2 解压相关的软件包 1.1.3 Maven 配置环境变量 1.1.4 配…

【MyBatis】主配置文件

目录 11.2【MyBatis】主配置文件 1.properties&#xff08;属性&#xff09; 2.settings(设置) 3.typeAliases(别名) 4.typeHandlers类型处理器 5.objectFactory 对象工厂 6.plugins(插件) 7.environments (配置环境) 8.mappers (映射器) 11.2【MyBatis】主配置文件 MyBatis的 …

[Docker实现测试部署CI/CD----相关服务器的安装配置(1)]

目录 0、CI/CD系统最终架构图规划IP地址 1、git配置Git下载pycharm配置gitidea配置git 2、GitLab安装与配置主机要求拉取镜像定义 compose.yml启动gitlab浏览器访问并修改密码查看登录密码修改密码 3、SonarQube 安装与配置拉取镜像修改虚拟内存的大小启动SonarQube登录 SonarQ…

appuploader不是开发者账号

Appuploader是一款可以帮助开发者上传iOS应用到Apple App Store的工具。很多开发者都知道&#xff0c;在上传应用到App Store之前&#xff0c;需要创建开发者账号并获得苹果官方的认证才能进行上传。但是&#xff0c;有些开发者可能并不想去注册开发者账号&#xff0c;或者遇到…

vue3学习-ref引用

模板引用 使用特殊的 refattribute 允许再特定的Dom或组件被挂在后&#xff0c;获取他的直接引用。 import { ref } form vue const input ref(null) <input ref"input"/>注意&#xff1a;只可以在组件挂载后才能访问模板引用 #如果你需要侦听一个模板引用 r…

mac pd安装ubuntu并配置远程连接

背景 一个安静的下午&#xff0c;我又想去折腾点什么了。准备学习一下k8s的&#xff0c;但是没有服务器。把我给折腾的&#xff0c;在抱怨了&#xff1a;为什么M系列芯片的资源怎么这么少。 好在伙伴说&#xff0c;你可以尝试一下ubantu。于是&#xff0c;我只好在我的mac上安…

软件外包开发的GO语言特点

Go语言&#xff08;也称为Golang&#xff09;是由Google开发的一种编程语言。它具有许多特点&#xff0c;使其成为许多项目范围的优秀选择。Go语言适用于需要高性能、并发和简洁易读的项目&#xff0c;特别是面向网络和分布式应用的项目。今天和大家分享项目的特点及适用的项目…

【深度学习】SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking,论文

论文&#xff1a;https://arxiv.org/abs/2211.08824 代码&#xff1a;https://github.com/WWangYuHsiang/SMILEtrack 文章目录 AbstractIntroductionRelated WorkTracking-by-DetectionDetection methodData association method Tracking-by-Attention Methodology架构概述外观…

TensorFlow项目练手(三)——基于GRU股票走势预测任务

项目介绍 项目基于GRU算法通过20天的股票序列来预测第21天的数据&#xff0c;有些项目也可以用LSTM算法&#xff0c;两者主要差别如下&#xff1a; LSTM算法&#xff1a;目前使用最多的时间序列算法&#xff0c;是一种特殊的RNN&#xff08;循环神经网络&#xff09;&#xf…

Python小白学习:超级详细的字典介绍(字典的定义、存储、修改、遍历元素和嵌套)

目录 一、字典简介1.1 创建字典1.2 访问字典中的值1.3 添加键值对1.4 修改字典中的值实例 1.5 删除键值对1.6 由多个类似对象组成的字典1.7 使用get()访问值1.8 练习题 二、遍历字典2.1 遍历所有键值对实例 2.2 遍历字典中的所有键2.3 按照特定顺序遍历字典中的所有键2.4 遍历字…

04 Ubuntu中的中文输入法的安装

在Ubuntu22.04这种版本相对较高的系统中安装中文输入法&#xff0c;一般推荐使用fctix5&#xff0c;相比于其他的输入法&#xff0c;这款输入法的推荐词要好得多&#xff0c;而且不会像ibus一样莫名其妙地失灵。 首先感谢文章《滑动验证页面》&#xff0c;我是根据这篇文章的教…

通用指令(汇编)

一、数据处理指令1&#xff09;数学运算数据运算指令的格式数据搬移指令立即数伪指令加法指令带进位的加法指令减法指令带借位的减法指令逆向减法指令乘法指令数据运算指令的扩展 2&#xff09;逻辑运算按位与指令按位或指令按位异或指令左移指令右移指令位清零指令 3&#xff…

前端实现打印1 - 使用 iframe 实现 并 分页打印

目录 打印代码对话框预览打印预览 打印代码 <!-- 打印 --> <template><el-dialogtitle"打印":visible.sync"dialogVisible"width"50%"top"7vh"append-to-bodyclose"handleClose"><div ref"print…

Android 读取系统属性详解

一&#xff0c;背景介绍 Android 系统属性主要有两种&#xff1a;SettingsProvider 和 SystemProperties 。 二&#xff0c;SettingsProvider详解 2.1 关于Android"设置"里的一些属性可以直接通过settings命令直接查看或者设置adb shell 下 settings指令可以分别查…

STM32 DHT11

DHT11 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。 使用单总线通信 该传感器包括一个电容式感湿元件和一个NTC测温元件&#xff0c;并于一个高性能8位单片机相连&#xff08;模数转换&#xff09;。 DHT11引脚说明 开漏模式下没有输出高电平的能…