【Docker】vxlan的原理与实验

VXLAN(Virtual eXtensible Local Area Network,虚拟可扩展局域网),是一种虚拟化隧道通信技术。它是一种Overlay(覆盖网络)技术,通过三层的网络来搭建虚拟的二层网络。

VXLAN介绍

VXLAN是在底层物理网络(underlay)之上使用隧道技术,借助UDP层构建的Overlay的逻辑网络,使逻辑网络与物理网络解耦,实现灵活的组网需求。它对原有的网络架构几乎没有影响,不需要对原网络做任何改动,即可架设一层新的网络。也正是因为这个特性,很多容器的网络才会选择VXLAN作为通信网络。

VXLAN不仅支持一对一,也支持一对多,一个VXLAN设备能通过像网桥一样的学习方式学习到其他对端的IP地址,还可以直接配置静态转发表。

VXLAN基本概念

  • VNI(VXLAN Network Identifier,VXLAN网络标识符):VXLAN通过VXLAN ID来标识,其长度为24比特。一般每个VNI对应一个租户,也就是说使用VXLAN理论上可以支撑千万级别的租户。

  • VTEP(VXLAN Tunnel End Point,VXLAN隧道端点):VXLAN网络的边缘设备,用来进行VXLAN报文的处理(封包和解包)。VXLAN的相关处理都在VTEP上进行,例如识别以太网数据帧所属的VXLAN、基于VXLAN对数据帧进行二层转发、封装/解封装报文等。VTEP可以是一台独立的物理设备,也可以是虚拟机所在服务器的虚拟交换机。

  • VXLAN Tunnel:两个VTEP之间点到点的逻辑隧道。VTEP为数据帧封装VXLAN头、UDP头、IP头后,通过VXLAN隧道将封装后的报文转发给远端VTEP,远端VTEP对其进行解封装。隧道是一个逻辑上的概念,在VXLAN模型中并没有具体的物理实体向对应。隧道可以看做是一种虚拟通道,VXLAN通信双方认为自己是在直接通信,并不知道底层网络的存在。从整体来说,每个VXLAN网络像是为通信的虚拟机搭建了一个单独的通信通道,也就是隧道。

    上图所示为VXLAN的工作模型,它创建在原来的IP网络(三层)上,只要是三层可达(能够通过IP相互通信)的网络就能部署 VXLAN。在VXLAN网络的每个端点都有一个VTEP设备,负责VXLAN协议报文的解包和封包,也就是在虚拟报文上封装VTEP通信的报文头部。

物理网络上可以创建多个VXLAN网络,可以将这些VXLAN网络看成一个隧道,不同节点上的虚拟机/容器能够通过隧道直连。通过VNI标识不同的VXLAN网络,使得不同的VXLAN可以相互隔离。

VXLAN的报文格式


VXLAN Header:在原始二层帧的前面增加8字节的VXLAN的头部,其中最主要的是VNID,占用3个字节(即24bit),类似VLAN ID,可以具有2^24个网段。

UDP Header:在VXLAN和原始二层帧的前面使用8字节UDP头部进行封装(MAC IN UDP),目的端口号缺省使用4789,源端口按流随机分配(通过MAC,IP,四层端口号进行hash操作),这样可以更好的做ECMP。

在上面添加的二层封装之后,再添加底层网络的IP头部(20 字节)和MAC头部(14 字节),这里的IP和MAC是宿主机的IP地址和 MAC地址。

VXLAN通讯过程

总的来说,VXLAN报文的转发过程就是:原始报文经过VTEP,被VTEP添加上VXLAN头部以及外层的UDP头部,再发送出去,对端 VTEP接收到VXLAN报文后拆除外层UDP头部,并根据VXLAN头部的VNI把原始报文发送到目的服务器。但这里有一个问题,第一次通信前双方如何知道所有的通信信息?这些信息包括:

  • 哪些VTEP需要加到一个相同的VNI组?
  • 发送方虚拟机怎么知道对方的MAC地址?
  • VTEP怎么知道目的虚拟机在哪一台宿主机上?

这三个问题可以归结为同一个问题:VXLAN网络怎么感知彼此的存在并选择正确的路径传输报文?

第一个问题简单,VTEP通常由网络管理员来配置。要回答后面两个问题,还得回到VXLAN协议的报文上,看看一个完整的VXLAN报文需要哪些信息:

  • 内层报文:通信双方的IP地址已经明确,只需要VXLAN填充对方的MAC地址,因此需要一个机制来实现ARP功能。
  • VXLAN头部:只需要知道VNI。一般直接配置在VTEP上,要么提前规划,要么根据内层报文自动生成。
  • UDP头部:需要知道源端口和目的端口,源端口由系统自动生成,目的端口默认是4789。
  • IP头部:需要知道对端VTEP的IP地址,这个是最关键的部分。

实际上,VTEP也会有自己的转发表,转发表通过泛洪和学习机制来维护,对于目标MAC地址在转发表中不存在的未知单播,广播流量,都会被泛洪给除源VTEP外所有的VTEP,目标VTEP响应数据包后,源VTEP会从数据包中学习到MAC,VNI和VTEP的映射关系,并添加到转发表中,后续当再有数据包转发到这个MAC地址时,VTEP会从转发表中直接获取到目标VTEP地址,从而发送单播数据到目标VTEP。

点对点的VXLAN通信

点对点的VXLAN通信,在这个实验中使用两台虚拟机构成一个VXLAN网络,每台机器的网卡作为vtep,通过设置的ip互相通信。

主机规划:

  • node1:172.20.160.13/20
  • node2:172.20.161.221/20

实验结构图如下图所示。

对于,两台主机的网卡之间的通信,如果不使用vxlan,就需要设置路由表,此时两个网卡的ip不能是同一个网段。接下来,进行点对点的vxlan的通信。

在node1上创建一个名字为vxlan-ethd,类型为vxlan的网卡,后面是vxlan-ethd网卡需要的参数:

  • id 1:指定VNI的值,这个值可以在1到2^24之间
  • dstport:vtep通信的端口
  • remote 172.20.161.221:对方vtep的地址,类似于点对点协议
  • local 172.20.160.13:当前节点vtep要使用的IP地址
$ sudo ip link add vxlan-ethd type vxlan id 1 dstport 4789 remote 172.20.161.221 local 172.20.160.13

启动vxlan-ethd网卡并为其分配IP;

$ sudo ip link set vxlan-ethd up
$ sudo ip addr add 10.0.1.1/24 dev vxlan-ethd

在node2上也进行同样的操作:

$ sudo ip link add vxlan-ethd type vxlan id 1 dstport 4789 remote 172.20.160.13 local 172.20.161.221
$ sudo ip link set vxlan-ethd up
$ sudo ip addr add 10.0.1.2/24 dev vxlan-ethd

接下来,这两个位于不同虚拟机上的网卡就可以通过vxlan隧道进行通信了,在node1中尝试访问node2的10.0.1.2

$ ping -I 10.0.1.1 10.0.1.2 -c 3
PING 10.0.1.2 (10.0.1.2) from 10.0.1.1 : 56(84) bytes of data.
64 bytes from 10.0.1.2: icmp_seq=1 ttl=64 time=0.899 ms
64 bytes from 10.0.1.2: icmp_seq=2 ttl=64 time=0.934 ms
64 bytes from 10.0.1.2: icmp_seq=3 ttl=64 time=1.53 ms--- 10.0.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2022ms
rtt min/avg/max/mdev = 0.899/1.124/1.539/0.293 ms

跨主机的容器通信

上面最简单的点对点VXLAN实验只是个简单的演示,没有太多实际工程意义,本节用容器通信来演示一个更加完整的场景。

场景描述:在node1和node2上各部署一个docker容器,默认情况下,一个容器宿主机上的容器能够直接用私网IP地址通信,因为它们利用一个网桥接在一起。而不同宿主机上的容器无法直接用私网IP地址通信。使用自建的vxlan网络接口,来打通不同宿主机上容器,让它们可以直接利用内网IP通信。

准备容器

在node1上创建app1容器,指定IP为172.18.0.2:

$ sudo docker network create --subnet 172.18.0.0/16 my-network
04a3be456f01099cb18818fa50804cc69a359ee77ba8d8d3e3bb12cf06e52434$ sudo docker container run -d --rm --name app1 --network my-network --ip 172.18.0.2 busybox ping 8.8.8.8
c7fbfe06fb871d88d3fc9224636c25da78d61cf8aaa98b87df65403e771437be

在node2上创建app2容器,指定IP为172.18.0.3:

$ sudo docker network create --subnet 172.18.0.0/16 my-network
09fb688212d956ebbb5e775f8d8847d9cf2705c7ed96127dc411648383ba839f$ sudo docker container run -d --rm --name app2 --network my-network --ip 172.18.0.3 busybox ping 8.8.8.8
745c98439680ecc9ef97b02aabda3dcc8fb19bd76f73b2e79d9134f858b17fbd

在node1中的容器app1上访问node2中的容器app2,和预期一致,是无法ping通的:

$ sudo docker container exec -it app1 ping -c 3 172.18.0.3
PING 172.18.0.3 (172.18.0.3): 56 data bytes--- 172.18.0.3 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss

创建VXLAN接口接入docker网桥

在两个容器宿主机上各创建一个VXLAN接口,并且将VXLAN接口接入docker网桥的端口上,如下图:

有了VXLAN接口的连接后,从node1上容器app1发出的包到达docker网桥后,可以从网桥的VXLAN接口出去,从而报文在VETP(VXLAN接口)处被封装成VXLAN报文,再从物理网络上到达对端VETP所在的主机node2。对端VTEP能正确解包VXLAN报文的话,随后即可将报文通过node2上的docker网桥送到上层的docker容器app2中。

在node1上配置如下:

$ sudo ip link add vxlan_docker type vxlan id 200 remote 172.20.161.221 dstport 4789 dev eth0$ sudo ip link set vxlan_docker up$ sudo brctl addif br-04a3be456f01 vxlan_docker

在node2上配置如下:

$ sudo ip link add vxlan_docker type vxlan id 200 remote 172.20.160.13 dstport 4789 dev eth0$ sudo ip link set vxlan_docker up$ sudo brctl addif br-09fb688212d9 vxlan_docker

此时再在node1中的容器app1上访问node2中的容器app2,结果如下,ping可以通。

$ sudo docker container exec -it app1 ping -c 3 172.18.0.3
PING 172.18.0.3 (172.18.0.3): 56 data bytes
64 bytes from 172.18.0.3: seq=0 ttl=64 time=1.841 ms
64 bytes from 172.18.0.3: seq=1 ttl=64 time=0.562 ms
64 bytes from 172.18.0.3: seq=2 ttl=64 time=1.615 ms--- 172.18.0.3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.562/1.339/1.841 ms

FDB表

FDB(Forwarding Database entry,即转发表)是Linux网桥维护的一个二层转发表,用于保存远端虚拟机/容器的MAC地址,远端VTEP IP,以及VNI的映射关系,可以通过bridge fdb命令来对FDB表进行操作:

$ sudo bridge fdb
02:42:ac:12:00:03 dev vxlan_docker master br-e4fbde69f952
ca:d7:ea:37:0a:b2 dev vxlan_docker vlan 1 master br-e4fbde69f952 permanent
ca:d7:ea:37:0a:b2 dev vxlan_docker master br-e4fbde69f952 permanent
00:00:00:00:00:00 dev vxlan_docker dst 172.20.161.221 via eth0 self permanent
02:42:ac:12:00:03 dev vxlan_docker dst 172.20.161.221 self
33:33:00:00:00:01 dev br-e4fbde69f952 self permanent
01:00:5e:00:00:01 dev br-e4fbde69f952 self permanent
02:42:f7:03:fb:17 dev br-e4fbde69f952 vlan 1 master br-e4fbde69f952 permanent
02:42:f7:03:fb:17 dev br-e4fbde69f952 master br-e4fbde69f952 permanent

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/217024.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【智能家居】八、监控摄像采集、人脸识别比对进行开门功能点

一、使用 fswebcam 测试 USB 摄像头 二、根据demo来实现功能点 三、功能点编写编译运行实现 四、mjpg实现监控识别 五、V4L2 视频设备 Linux 内核模块的一部分 一、使用 fswebcam 测试 USB 摄像头 a. 安装 fswebcam orangepiorangepi:~$ sudo apt update orangepiorangepi:~…

SSL证书可以有效避免劫持和钓鱼攻击

SSL证书对抗劫持和钓鱼攻击起到重要作用。通过使用SSL证书,网站可以防止黑客篡改网站内容或欺骗用户,确保用户所看到的是真实的网站信息,而不是被篡改的内容或诱导性的信息。这有助于保护用户的隐私和安全,并建立用户对网站的信任…

LeetCode008之字符串转换整数 (相关话题:状态机)

题目描述 请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C 中的 atoi 函数)。 函数 myAtoi(string s) 的算法如下: 读入字符串并丢弃无用的前导空格检查下一个字符(假设还…

一天搞定jmeter入门到入职全套教程之Jmeter分布式测试

随着并发量的增大,一台机器就不能满足需求了,所以我们采用分布式(Master-Slaver)的方案去执行高并发的测试 注意事项: Master机器一般我们不执测试,所以可以拿一台配置差些的机器,主要用来采集…

c 语言 堆的解析(自我理解)!!!堆排序,建堆

目录 1.堆是什么? 2.堆的实现和接口。(小堆) 1.头文件 2.初始化 3.摧毁 4.向上调整(重点) 5.向下调整(重点) 6.插入(重点) 7.删除(重点) …

Linux---虚拟机软件

1. 虚拟机软件的介绍 它是能够虚拟出来计算机的一个软件。 常用虚拟机软件: VmwareVirtualBox 说明: 只有安装了虚拟机软件才可以创建虚拟机,当然通过虚拟机软件还可以创建多个虚拟机。 2. 虚拟机的介绍 就是模拟一个真实的计算机,好比一个虚拟的…

go学习之反射知识

反射 文章目录 反射1、反射的使用场景1)结构体标签的应用2)使用反射机制编写函数的适配器(桥连接) 2、反射的基本介绍-1.基本介绍-2.反射的图解-3.反射重要的函数和概念 3.反射快速入门-1.请编写一个函数,演示对&#…

【C进阶】C程序是怎么运作的呢?-- 程序环境和预处理(下)

前言: 这是程序环境和预处理的下半篇文章。至此,关于c语言知识点:从编译到运行的过程已讲解完毕。传送🚪,上半篇: http://t.csdnimg.cn/hvxmr 本章涉及的知识点: 宏和函数对比、命名约定、#undef、命令行定…

C语言—每日选择题—Day46

第一题 1. 下列程序段的输出结果是&#xff08;&#xff09; #include <stdio.h> int main() {int x 1,a 0,b 0;switch(x) {case 0: b;case 1: a;case 2: a;b;}printf("a%d,b%d\n", a, b);return 0; } A&#xff1a;a2,b1 B&#xff1a;a1,b1 C&#xf…

JVM面试

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1.JVM 的整体结构2.类加载做了哪些事情?类加载器有哪些&#xff1f;双亲委派和沙箱安全 3.Java虚拟机栈是什么4.方法区的理解HotSpot 中方法区的演进方法区的内部结…

【Spring教程26】Spring框架实战:从零开始学习SpringMVC 之 bean加载控制

目录 1 问题分析2 思路分析3 环境准备4 设置bean加载控制5 知识点1&#xff1a;ComponentScan 欢迎大家回到《Java教程之Spring30天快速入门》&#xff0c;本教程所有示例均基于Maven实现&#xff0c;如果您对Maven还很陌生&#xff0c;请移步本人的博文《如何在windows11下安装…

文件搜索项目演示

演示功能搜索功能1&#xff1a;根据文件名搜索2&#xff1a;根据文件路径搜索3&#xff1a;根据文件名拼音(全拼、首拼)搜索 选择更新目录功能自动初始化和定时更新功能程序文件项目知识介绍 演示功能 搜索功能 1&#xff1a;根据文件名搜索 2&#xff1a;根据文件路径搜索 3…

Linux--操作系统

1. 常见的操作系统 Windowsmac OSLinuxiOSAndroid 2. 操作系统的定义 操作系统直接运行在计算机上的系统软件&#xff0c; 它是控制硬件和支持软件运行的计算机程序。 3. 操作系统的作用 向下控制硬件向上支持软件的运行&#xff0c;具有承上启下的作用。 4.总结 操作系统…

Win10的SVN Adapter V1.0 中黄色感叹号 -- 解决

大部分都问题都可以通过&#xff1a; 关闭 SVN Adapter V1.0 在下载最新的 SVNDrv.sys替换 C:\Windows\System32\drivers 中的同名文件启动 SVN Adapter V1.0 就能成功 但是部分人的电脑 SVN Adapter V1.0 是有感叹号的&#xff0c;说明注册表有问题 先用 CCleaner 修复注册表…

vue实现移动端适配

目录 1. 使用vw单位&#xff1a;vw是视窗宽度的百分比&#xff0c;可以根据不同设备的屏幕宽度来进行自适应。在Vue中可以通过设置全局CSS样式&#xff0c;将所有的尺寸单位改为vw。 2. 使用Flexible.js&#xff1a;Flexible.js是一个用于淘宝移动端适配的库&#xff0c;可以…

正则表达式(8):基本正则表达式小结

正则表达式&#xff08;8&#xff09;&#xff1a;基本正则表达式小结 本博文转载自 写这篇文章的目的就是总结前文中所介绍的”基本正则表达式”&#xff0c;并且结合一些实例进行练习&#xff0c;以便我们能够在练习中完全掌握它们。 首先&#xff0c;我们对前文中提到的符…

【rabbitMQ】声明队列和交换机

上一篇&#xff1a;springboot整合rabbitMQ模拟简单收发消息 https://blog.csdn.net/m0_67930426/article/details/134904766?spm1001.2014.3001.5501 相关配置环境参考上篇 springAMQP提供了几个类用来声明声明队列&#xff0c;交换机及其绑定关系 声明队列&#xff0c;…

Rational rose 安装教程(图文)

Rational Rose是Rational公司出品的一种面向对象的统一建模语言的可视化建模工具。用于可视化建模和公司级水平软件应用的组件构造。 就像一个戏剧导演设计一个剧本一样&#xff0c;一个软件设计师使用Rational Rose&#xff0c;以演员&#xff08;数字&#xff09;、使用拖放式…

第三届iEnglish全国ETP大赛16强落位 诠释教育游戏价值

10日,与北方骤降的温度形成鲜明对比,以“玩转英语,用iEnglish”为主题的国内首个教育游戏活动第三届iEnglish全国ETP(English Through Pictures)大赛总决赛小组赛热火朝天的进行。随着“云帆沧海队”搭上末班车,本届活动16强全部产生,接下来的三个周末他们将向年度总冠军发起最…

C# WPF上位机开发(增强版绘图软件)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们写过一个绘图软件&#xff0c;不过那个比较简单&#xff0c;主要就是用鼠标模拟pen进行绘图。实际应用中&#xff0c;另外一种使用比较多的…