MIT18.06线性代数 笔记3

文章目录

    • 对称矩阵及正定性
    • 复数矩阵和快速傅里叶变换
    • 正定矩阵和最小值
    • 相似矩阵和若尔当形
    • 奇异值分解
    • 线性变换及对应矩阵
    • 基变换和图像压缩
    • 单元检测3复习
    • 左右逆和伪逆
    • 期末复习

对称矩阵及正定性

  1. 特征值是实数
  2. 特征向量垂直=>标准正交

image-20231118200212496

谱定理,主轴定理

为什么对称矩阵的特征值是实数:

对特征值和特征向量取共轭(A是实数矩阵,共轭后不变)
A x = λ x x ‾ T A x = λ x ‾ T x ⇒ 取共轭 A x ‾ = λ ‾ x ‾ ⇒ 转置 x ‾ T A = x ‾ T λ ‾ x ‾ T A x = x ‾ T λ ‾ x 可知 λ x ‾ T x = x ‾ T λ ‾ x ,即 λ = λ ‾ \begin{aligned} \begin{aligned} Ax &= \lambda x \\ \overline{x}^TAx &= \lambda\overline{x}^Tx \end{aligned} \Rightarrow^{取共轭} A\overline{x}=\overline{\lambda}\overline{x} \Rightarrow^{转置} \begin{aligned} \overline{x}^TA &= \overline{x}^T\overline{\lambda} \\ \overline{x}^TAx &= \overline{x}^T\overline{\lambda}x \end{aligned}\\ 可知\lambda\overline{x}^Tx=\overline{x}^T\overline{\lambda}x,即\lambda=\overline{\lambda} \end{aligned} AxxTAx=λx=λxTx取共轭Ax=λx转置xTAxTAx=xTλ=xTλx可知λxTx=xTλx,即λ=λ

如果一个向量为复向量,那么 x ‾ T x 就是其长度的平方 如果一个向量为复向量,那么\overline{x}^Tx就是其长度的平方 如果一个向量为复向量,那么xTx就是其长度的平方

image-20231118205327534
q 1 q 1 T 类似于 P = a a T a T a ,是投影矩阵 q_1q_1^T类似于P=\frac{aa^T}{a^Ta},是投影矩阵 q1q1T类似于P=aTaaaT,是投影矩阵
所以,每个对称矩阵都是一些相互垂直的投影矩阵的组合

对对称矩阵来说,正主元的个数=正特征值的个数,通过这个结论,可以缩小特征值的范围:将矩阵平移7倍的单位矩阵,即将特征值平移7,计算矩阵主元,从而直到原矩阵多少特征值大于7多少小于7

对称矩阵主元的乘积=对称矩阵的行列式=特征值的乘积

正定矩阵:

  1. 所有特征值为正
  2. 所有主元为正
  3. 所有的子行列式(左上到右下)为正

复数矩阵和快速傅里叶变换

复向量模长度:
z ‾ T z = z H z = [ z 1 ‾ z 2 ‾ … z n ‾ ] [ z 1 z 2 … z n ] = ∣ z 1 ∣ 2 + ∣ z 2 ∣ 2 + ∣ z 3 ∣ 2 + ⋯ + ∣ z n ∣ 2 = 向量模长平方 \overline{z}^Tz= z^Hz= \begin{bmatrix} \overline{z_1} & \overline{z_2} & \dots & \overline{z_n} \end{bmatrix} \begin{bmatrix} z_1\\ z_2\\ \dots\\ z_n \end{bmatrix}=|z_1|^2+|z_2|^2+|z_3|^2+\dots+|z_n|^2=向量模长平方 zTz=zHz=[z1z2zn] z1z2zn =z12+z22+z32++zn2=向量模长平方
复向量内积:
y ‾ T x = y H x \overline{y}^Tx=y^Hx yTx=yHx
复对称矩阵(埃尔米特矩阵):
A ‾ T = A H = A \overline{A}^T=A^H=A AT=AH=A
这些矩阵的特征值是实数,特征向量相互垂直,即内积为:

image-20231118231558979
Q ‾ T Q = Q H Q = I \overline{Q}^TQ=Q^HQ=I QTQ=QHQ=I
Q的逆是QH,这样的正交矩阵称为酉矩阵

傅里叶矩阵:

右边的列元素等于左边的列元素乘第二列对应行的元素
在这里插入图片描述

在复平面中,w在单位圆上,每次乘w在图像上都是旋转固定角度由此可根据欧拉公式
e π j = cos ⁡ π + sin ⁡ π j = − 1 e^{\pi j}=\cos \pi + \sin \pi j=-1 eπj=cosπ+sinπj=1
得到具体值

image-20231119091911093

得到的F(n)各列正交,内积(取共轭)为0,
( w 64 ) 2 = ( e i 2 π 64 ) 2 = w 32 (w_{64})^2=(e^{i\frac{2\pi}{64}})^2=w_{32} (w64)2=(ei642π)2=w32

快速傅里叶变换:

image-20231119094520853

计算步骤从642变成2(32)2+32,因为两个F32需要2(32)2,而两个D需要2 * 16。之后继续分解两个F32为四个F16,计算步骤变成2[2(16)2+16]+32,以此类推,最终变成6 * 64,即log264 * (64/2),所以变换后计算步骤能从n2变成nlog2n/2

image-20231119095834435


正定矩阵和最小值

正定矩阵的新性质:二次型xTAx > 0

半正定矩阵:行列式正好等于0,即有一个特征值等于0image-20231119101009616

image-20231119101514325

如果是非正定矩阵,如结果为2x12+12x1x2+7x22,该函数图像为鞍面(一个方向上有最大值且小于零,另一方向上有最小值且大于零,原点为鞍点)

如果是正定矩阵,如结果为2x12+12x1x2+20x22,该函数图像为碗面,最小值为原点

微积分:一阶导数等于0,二阶导数大于0=>极小值

线性代数:对f(x1, x2, …),产生它的矩阵A为正定矩阵=>极小值

配方法就是消元:
矩阵 [ 2 6 6 20 ] 求 x T A x 得 f ( x , y ) = 2 x 3 + 12 x y + 20 y 2 消元得 = 2 ( x + 3 y ) 2 + 2 y 2 ⇒ 第一行主元 ( x + 消元倍数 y ) 2 + 第二行主元 y 2 矩阵\begin{bmatrix} 2 & 6\\ 6 & 20 \end{bmatrix} 求x^TAx得 \begin{aligned} f(x, y) &= 2x^3+12xy+20y^2\\ 消元得&= 2(x+3y)^2+2y^2 \Rightarrow 第一行主元(x+消元倍数y)^2+第二行主元y^2 \end{aligned} 矩阵[26620]xTAxf(x,y)消元得=2x3+12xy+20y2=2(x+3y)2+2y2第一行主元(x+消元倍数y)2+第二行主元y2
因此,正主元使得f(x, y)>0,函数图像向上

3x3的例子:

image-20231119111654280

有3x3正定矩阵Q Lambda QT=A(主轴定理),对xTAx取1,得到一个椭球体的函数,椭球体的三个轴方向即A的特征向量方向,轴长度为特征值大小


相似矩阵和若尔当形

A是正定矩阵,因为A-1特征值是A的特征值的倒数,所以也是正定矩阵

A,B是正定矩阵,xT(A+B)x>0,所以A+B也是正定矩阵

image-20231119113801655

当A的秩是n时,Ax的零空间没有向量,则|Ax|2 > 0

相似矩阵:A和B是相似矩阵,意味着存在矩阵M,使得B=M-1AM
S − 1 A S = Λ 即 A 、 B 和 Λ 相似 S^{-1}AS=\Lambda\\ 即A、B和\Lambda相似 S1AS=ΛABΛ相似
所以存在一个矩阵族,任意两个矩阵互相相似

相似矩阵之间特征值相同

证明:
A x = λ x M − 1 A M M − 1 x = λ M − 1 x ( M − 1 A M ) ( M − 1 x ) = λ ( M − 1 x ) B M − 1 x = λ M − 1 x \begin{aligned} Ax &= \lambda x\\ M^{-1}AMM^{-1}x &= \lambda M^{-1}x\\ (M^{-1}AM)(M^{-1}x) &= \lambda (M^{-1}x)\\ BM^{-1}x &= \lambda M^{-1}x \end{aligned} AxM1AMM1x(M1AM)(M1x)BM1x=λx=λM1x=λ(M1x)=λM1x
A和B特征值相同,但是特征向量不同,B的特征向量是 M^{-1}x

当是退化矩阵时,分两种情况:相似矩阵只有它一个矩阵、相似矩阵有多个

image-20231119131950188

第二种叫做若尔当标准型,无法对角化

image-20231119132832221

每个A和一个若尔当矩阵相似,若尔当矩阵是由若尔当块构成的矩阵
J = [ J 1 J 2 … J d ] J=\begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \dots &\\ & & & J_d \end{bmatrix} J= J1J2Jd
若尔当块:特征值位于对角线上,对角线上方还有若干个1

若A有n个各不相同的特征值,即可对角化,那么对应的若尔当阵就是对角阵 Lambda ,d=n


奇异值分解

SVD对任意A成立
A = U Σ V T A=U\Sigma V^T A=UΣVT
如A=Q Lambda QT

行空间的一组正交基变换成一组列空间的正交基,如v1变换成u1就是
σ 1 u 1 = A v 1 整合成矩阵就是 A [ v 1 v 2 … v r v r + 1 … v n ] = [ u 1 u 2 … u r u r + 1 … u m ] [ σ 1 … 0 0 … 0 … … … … … … 0 … σ r 0 … 0 0 … 0 0 … 0 … … … … … … 0 … 0 0 … 0 ] A V = U Σ \sigma_1u_1=Av_1\\ 整合成矩阵就是\\ \begin{aligned} A\begin{bmatrix} v_1 & v_2 & \dots & v_r & v_{r+1} & \dots & v_n \end{bmatrix} &= \begin{bmatrix} u_1 & u_2 & \dots & u_r & u_{r+1} & \dots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0\\ \dots & \dots & \dots & \dots & \dots & \dots\\ 0 & \dots & \sigma_r & 0 & \dots & 0\\ 0 & \dots & 0 & 0 & \dots & 0\\ \dots & \dots & \dots & \dots & \dots & \dots\\ 0 & \dots & 0 & 0 & \dots & 0\\ \end{bmatrix}\\ AV&= U\Sigma \end{aligned} σ1u1=Av1整合成矩阵就是A[v1v2vrvr+1vn]AV=[u1u2urur+1um] σ10000σr0000000000 =UΣ
1到r是行空间/列空间的,r+1到n是零空间和左零空间的

不一次就找出两个正交矩阵U和V,消去U
A V = U Σ A = U Σ V − 1 = U Σ V T A T A = ( V Σ T U T ) U Σ V − 1 A T A = V Σ T Σ V − 1 = V [ σ 1 2 σ 2 2 … ] V T \begin{aligned} AV &= U\Sigma\\ A &= U\Sigma V^{-1}=U\Sigma V^T\\ A^TA &= (V\Sigma^TU^T)U\Sigma V^{-1}\\ A^TA &= V\Sigma^T\Sigma V^{-1}=V \begin{bmatrix} \sigma_1^2 & &\\ & \sigma_2^2 &\\ & & \dots \end{bmatrix}V^T \end{aligned} AVAATAATA=UΣ=UΣV1=UΣVT=(VΣTUT)UΣV1=VΣTΣV1=V σ12σ22 VT
ATA的特征向量是那些v,特征值是那些 sigma2 ,这些特征值就是奇异值

对于对称矩阵来说,V和U是一样的

eg:
在这里插入图片描述

反过来求AAT,特征值与ATA相同,特征向量组成U


线性变换及对应矩阵

行列式、特征值、零空间等都源自于矩阵,而矩阵的背后是线性变换

判断线性变换的两大条件:加法和数乘的不变性

平面平移不是一个线性变换

T(v)=||v||,T(-v) != -T(v)

线性变换对空间的影响体现在变换T对输入空间基向量的变换上,换句话说,只要知道T(v1), T(v2), … , T(vn),就足以确定任何v的线性变换T(v)

如果以特征向量为基,用输入基和输出基求变换矩阵,求出的变换矩阵是对角阵Lambda,对角线上都是特征值

如何确定矩阵A:给定两个基向量组v和w

  1. A第一列:T(v1)=a11w1 + a21w2 + … + am1wm
  2. A第二列:T(v2)=a12w1 + a22w2 + … + am2wm

求导是一个线性变换,所以只需要知道少量的函数的求导法则就能求出它们的线性组合的导数

image-20231119211220583


基变换和图像压缩

压缩:将图像矩阵变换成一组基能表示的矩阵

无损压缩:像素向量可以分解为一组基矩阵乘一个参数向量
像素向量 p = c 1 w 1 + ⋯ + c n w n p = [ 基向量组成的矩阵 ] [ c 1 … c n ] c = W − 1 p \begin{aligned} 像素向量p &= c_1w_1+\dots+c_nw_n\\ p &= \begin{bmatrix} 基向量组成的矩阵 \end{bmatrix} \begin{bmatrix} c_1\\ \dots\\ c_n \end{bmatrix}\\ c&=W^{-1}p \end{aligned} 像素向量ppc=c1w1++cnwn=[基向量组成的矩阵] c1cn =W1p
w是标准正交的,w-1=wT

使用c重构信号
x ^ = ∑ c i ^ v i x ^ 是压缩后的像素向量, Σ 加和的个数是压缩后的行数( c 的行数),如从 63 压缩到 3 ,则压缩比是 21 : 1 \hat{x}=\sum{\hat{c_i}v_i}\\ \hat{x}是压缩后的像素向量,\Sigma加和的个数是压缩后的行数(c的行数),如从63压缩到3,则压缩比是21:1 x^=ci^vix^是压缩后的像素向量,Σ加和的个数是压缩后的行数(c的行数),如从63压缩到3,则压缩比是21:1
找到更好的基:

  1. 快速求c,FFT FWT
  2. 良好的压缩性,少量基向量就能接近信号

基变换:
[ x ] 旧基 → [ c ] 新基 \begin{bmatrix} x \end{bmatrix}_{旧基} \rightarrow \begin{bmatrix} c \end{bmatrix}_{新基} [x]旧基[c]新基
x=Wc

两组基v1, … , vn和w1, … , wn同一变换得到T(v)=A 和 T(w)=B,A、B相似
B = M − 1 A M B = W − 1 A W B=M^{-1}AM\\ B=W^{-1}AW B=M1AMB=W1AW

已知变换 T 和一组基,即知 T ( v 1 ) , T ( v 2 ) , … , T ( v n ) , v 相当于上面的 w 结果展成基的形式 T ( v n ) = a 1 n v 1 + a 2 n v 2 + ⋯ + a n n v n A = [ a 11 … a 1 n … … a n 1 … a n n ] 压缩 x = c 1 v 1 + ⋯ + c n v n T ( x ) = c 1 T ( v 1 ) + ⋯ + c n T ( v n ) 已知变换T和一组基,即知T(v_1), T(v_2), \dots, T(v_n),v相当于上面的w\\ 结果展成基的形式T(v_n)=a_{1n}v_1 + a_{2n}v_2 + \dots + a_{nn}v_n\\ A=\begin{bmatrix} a_{11} & \dots & a_{1n}\\ \dots & & \dots\\ a_{n1} & \dots & a_{nn} \end{bmatrix}\\ \\ 压缩x=c_1v_1+ \dots + c_nv_n\\ T(x)=c_1T(v_1)+ \dots + c_nT(v_n) 已知变换T和一组基,即知T(v1),T(v2),,T(vn),v相当于上面的w结果展成基的形式T(vn)=a1nv1+a2nv2++annvnA= a11an1a1nann 压缩x=c1v1++cnvnT(x)=c1T(v1)++cnT(vn)

当v是像素矩阵的特征向量时,此时v是完美基
T ( v n ) = λ n v n A = [ λ 1 λ 2 … λ n ] T(v_n)=\lambda_nv_n\\ A=\begin{bmatrix} \lambda_1\\ &\lambda_2\\ &&\dots\\ &&&\lambda_n \end{bmatrix} T(vn)=λnvnA= λ1λ2λn
取完美基很难,所以选其他的,如小波基和傅里叶基


单元检测3复习

A = A T ⇒ 特征值是实数,存在足够的特征向量(即使特征值重复) ⇒ 能对角化 相似矩阵特征值相同 ⇒ B k = M − 1 A k M A=A^T \Rightarrow 特征值是实数,存在足够的特征向量(即使特征值重复)\Rightarrow 能对角化\\ 相似矩阵特征值相同 \Rightarrow B^k=M^{-1}A^kM A=AT特征值是实数,存在足够的特征向量(即使特征值重复)能对角化相似矩阵特征值相同Bk=M1AkM

image-20231120134519661

解后两项在复平面的单位圆上,不收敛也不发散

解具有周期性image-20231120134652779

无论是对称矩阵还是反对称矩阵(或正交矩阵),特征向量都是相互正交的,满足AAT=ATA

将u(t)表示成矩阵指数形式:
u ( t ) = e A t u ( 0 ) = S e A t S − 1 u ( 0 ) = S [ e λ 1 t … e λ n t ] S − 1 u ( 0 ) u(t)=e^{At}u(0)=Se^{At}S^{-1}u(0)=S \begin{bmatrix} e^{\lambda_1t}\\ & \dots\\ && e^{\lambda_nt} \end{bmatrix}S^{-1}u(0) u(t)=eAtu(0)=SeAtS1u(0)=S eλ1teλnt S1u(0)

已知A的特征值和特征向量

image-20231120135819497

A能对角化=>任意c

A是对称矩阵=>任意实数c

A是正定矩阵=>c大于等于0

A是马尔科夫矩阵=>不可能,有大于1的特征值

A是一个投影矩阵的两倍=> P2=P投影矩阵特征值是0或1,c=0或2

正交矩阵不会改变向量长度 => Qx=lambda x两边求长度|x|=|lambda||x| => 正交矩阵特征值的绝对值为1

证明 A 是正交矩阵且是对称矩阵, 1 2 ( A + I ) 是投影矩阵 P 2 = 1 4 ( A 2 + 2 A + I ) = 1 4 ( I + 2 A + I ) = 1 2 ( A + I ) = P 1 2 ( A + I ) 的特征值 = 1 2 ( { 1 或 − 1 } + 1 ) = 1 或 0 证明A是正交矩阵且是对称矩阵,\frac{1}{2}(A+I)是投影矩阵\\ P^2=\frac{1}{4}(A^2+2A+I)=\frac{1}{4}(I+2A+I)=\frac{1}{2}(A+I)=P\\ \frac{1}{2}(A+I)的特征值=\frac{1}{2}(\{1或-1\}+1)=1或0 证明A是正交矩阵且是对称矩阵,21(A+I)是投影矩阵P2=41(A2+2A+I)=41(I+2A+I)=21(A+I)=P21(A+I)的特征值=21({11}+1)=10


左右逆和伪逆

A A − 1 = I = A − 1 A ⇒ r = m = n AA^{-1}=I=A^{-1}A \Rightarrow r=m=n AA1=I=A1Ar=m=n

列满秩,零空间只有零解,Ax=b有0或1个解
在这里插入图片描述

行满秩,左零空间只有零解,Ax=b有无穷多解,n-m个自由变量
在这里插入图片描述

A A l e f t − 1 = A ( A T A ) − 1 A T = 投影到列空间上的投影矩阵 A r i g h t − 1 A = A T ( A A T ) − 1 A = 投影到行空间上的投影矩阵 AA^{-1}_{left}=A(A^TA)^{-1}A^T=投影到列空间上的投影矩阵\\ A^{-1}_{right}A=A^T(AA^T)^{-1}A=投影到行空间上的投影矩阵 AAleft1=A(ATA)1AT=投影到列空间上的投影矩阵Aright1A=AT(AAT)1A=投影到行空间上的投影矩阵

行空间中的x,经过A矩阵映射,成为列空间的Ax,另有一y,若x!=y,则A(x)!=A(y)

伪逆:列空间回到行空间 y=A+A(y)

计算伪逆的关键:找到可以快速计算伪逆的因子

image-20231120154242648
Σ Σ + = [ 1 … 1 0 … 0 ] m × m Σ + Σ = [ 1 … 1 0 … 0 ] n × n \Sigma\Sigma^+= \begin{bmatrix} 1\\ &\dots\\ &&1\\ &&&0\\ &&&&\dots\\ &&&&&0 \end{bmatrix}_{m\times m} \\ \Sigma^+\Sigma= \begin{bmatrix} 1\\ &\dots\\ &&1\\ &&&0\\ &&&&\dots\\ &&&&&0 \end{bmatrix}_{n\times n} ΣΣ+= 1100 m×mΣ+Σ= 1100 n×n

A = U Σ V T A + = ( V T ) − 1 Σ + U − 1 = V Σ + U T \begin{aligned} A &= U\Sigma V^T\\ A^+ &= (V^T)^{-1}\Sigma^+U^{-1}=V\Sigma^+U^T \end{aligned} AA+=UΣVT=(VT)1Σ+U1=VΣ+UT


期末复习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/216813.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PaddleOCR:超越人眼识别率的AI文字识别神器

在当今人工智能技术已经渗透到各个领域。其中,OCR(Optical Character Recognition)技术将图像中的文字转化为可编辑的文本,为众多行业带来了极大的便利。PaddleOCR是一款由百度研发的OCR开源工具,具有极高的准确率和易…

Python从入门到精通七:Python函数进阶

函数多返回值 学习目标: 知道函数如何返回多个返回值 问: 如果一个函数如些两个return (如下所示),程序如何执行? 答:只执行了第一个return,原因是因为return可以退出当前函数,导致return下方的代码不执…

(3)kylin系统部署weblogic项目

一、jdk迁移 1、拷贝成功后要配置环境变量 vi /etc/profile 将jdk的目录添加进去 2、将jdk安装目录拷贝后权限会发生变化, 要对jdk下bin目录中的所有文件修改权限: chmod x ./* 回车即可 ----------------------------- 环境变量 export …

DBeaver连接kingbase8(人大金仓)

DBeaver连接kingbase8(人大金仓) 1、添加驱动 步骤:选择"数据库-->驱动管理器" 类名:com.kingbase8.Driver URL模板:jdbc:kingbase8://{host}[:[{post}]/[{database}] 端口:54321 添加jar包 2、连接数据库 点击…

Python 进阶(十六):二进制和ASCII码的转换(binascii 模块)

大家好,我是水滴~~ 本文详细介绍了Python中的binascii模块及其使用方法。通过binascii模块,我们可以方便地进行二进制和ASCII字符串之间的转换操作。文章中包含大量的示例代码,希望能够帮助新手同学快速入门。 《Python入门核心技术》专栏总…

【OPENGIS】Geoserver升级Jetty,不修改java版本

昨天搞了一个geoserver升级9.4.53版本的方法,但是需要修改java的版本,因为jetty官方网站下载的jar包是用jdk11编译的,如果不升级java版本,运行就会报错。 可是现场环境限制比较多,升级了java版本之后有些老版本的程序又…

【模拟】LeetCode-48. 旋转图像

旋转图像。 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],[4,5,6]…

Python 进阶(十五):Base64 编码和解码(base64 模块)

大家好,我是水滴~~ 本篇文章主要介绍Python的base64模块,主要内容有:Base64的概念、base64模块、base64编码和解码、以及其使用场景。文章中包含大量的示例代码,希望能够帮助新手同学快速入门。 《Python入门核心技术》专栏总目录…

ardupilot开发 --- git 篇

一些概念 工作区:就是你在电脑里能看到的目录;暂存区:stage区 或 index区。存放在 :工作区 / .git / index 文件中;版本库:本地仓库,存放在 :工作区 / .git 中 关于 HEAD 是所有本地…

逆序对的数量

归并排序模板题 相关文章 //采用归并排序,归并的过程可以算出逆序对的个数//所有的逆序对个数 /*排序后,两个数都在左边的逆序对数排序后,两个数都在右边的逆序对数如果一个数在左边,一个数在右边,在归并的过程中*/ //左边 < 右边,正常归并。如果左边 > 右边 //那么左边…

【头歌系统数据库实验】实验9 SQL视图

目录 第1关&#xff1a;请为三建工程项目建立一个供应情况的视图V_SPQ&#xff0c;包括供应商代码(SNO)、零件代码(PNO)、供应数量(QTY) 第2关&#xff1a;从视图V_SPQ找出三建工程项目使用的各种零件代码及其数量 第3关&#xff1a;从视图V_SPQ找出供应商S1的供应情况 第4…

2024世界燕窝滋补品展|上海燕博会推荐品牌天健燕窝集团-为消费者带来好燕窝!

天健燕窝集团拥有27年燕窝进出口贸易经验。是最早加入经营正规燕窝业务的企业之一&#xff0c;业务范围遍布全中国&#xff0c;2015 年至2019 年连续5年燕窝进口量全国第一。 一年一届的世界燕窝及天然滋补品博览会暨世界滋补生态发展大会&#xff08;简称上海燕博会&#xff…

网格中的最小路径代价

说在前面 &#x1f388;不知道大家对于算法的学习是一个怎样的心态呢&#xff1f;为了面试还是因为兴趣&#xff1f;不管是出于什么原因&#xff0c;算法学习需要持续保持。 问题描述 给你一个下标从 0 开始的整数矩阵 grid &#xff0c;矩阵大小为 m x n &#xff0c;由从 0 …

VUE3语法--toRefs与toRef用法

1、功能概述 ref和reactive能够定义响应式的数据&#xff0c;当我们通过reactive定义了一个对象或者数组数据的时候&#xff0c;如果我们只希望这个对象或者数组中指定的数据响应&#xff0c;其他的不响应。这个时候我们就可以使用toRefs和toRef实现局部数据的响应。 toRefs是…

CentOS7 安装包 MariaDB 10.4.x

CentOS7 安装包 MariaDB 10.4.x 统一 MariaDB安装包 https://www.alipan.com/s/fvLg3gN7LPX 提取码: nh81 打开「阿里云盘」

关于Anaconda的安装和环境部署(此章专为新手制定)

目录 Anaconda简介 一、软件下载&#xff08;地址&#x1f447;&#xff09; 2&#xff1a;点击下载 3&#xff1a;版本选择&#xff1a; 4&#xff1a;Anaconda的安装包就下载完成了 2&#xff1a;恭喜你&#xff0c;看到这里已经完成安装了 三、部署环境 1&#xff1…

什么是 AWS IAM?如何使用 IAM 数据库身份验证连接到 Amazon RDS(上)

驾驭云服务的安全环境可能很复杂&#xff0c;但 AWS IAM 为安全访问管理提供了强大的框架。在本文中&#xff0c;我们将探讨什么是 AWS Identity and Access Management (IAM) 以及它如何增强安全性。我们还将提供有关使用 IAM 连接到 Amazon Relational Database Service (RDS…

ubuntu 20.04 server 安装 zabbix

ubuntu 20.04 server 安装 zabbix 参考文档 https://www.yuque.com/fenghuo-tbnd9/ffmkvs?# zabbix没用过&#xff0c;用过prometheus&#xff0c; 因为现在很多应用都支持直接接入prometheus监控&#xff0c; 而且大部分语言都都有sdk支持&#xff0c; 可以直接接入自己的…

lightdb 23.4 支持pivot行转列

前言 Lightdb-x支持行转列、列转行功能&#xff1a; pivot支持的语法如下&#xff1a; pivot支持项测试 pivot测试 create table hs_pivot(name varchar(40),course varchar(100),score int); insert into hs_pivot values(‘zhangsan’,‘chinese’,90); insert into h…

香港高才通计划申请被拒了?很可能是因为这五个原因!

香港高才通计划申请被拒了&#xff1f;很可能是因为这五个原因&#xff01; 据统计&#xff0c;截止今年10月31日&#xff0c;香港各项输入人才计划共收到超过18万宗申请&#xff0c;超过11万宗已被批准&#xff0c;已有7万人到港。其中&#xff0c;高才通计划一共收到约55,000…