论文阅读《Learning Adaptive Dense Event Stereo from the Image Domain》

论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Cho_Learning_Adaptive_Dense_Event_Stereo_From_the_Image_Domain_CVPR_2023_paper.html


概述

  事件相机在低光照条件下可以稳定工作,然而,基于事件相机的立体方法在域迁移时性能会严重下降。无监督领域自适应作为该问题的一种解决方法,传统的无监督自适应方法依赖于源域的标签值,但源域的视差标签值难以获取。针对该问题,文中提出一种新的无监督域自适应密集时间立体匹配方法(ADES)用于缓解目标域域源域之间的域偏差导致的模型性能下降问题。首先,文中提出一种自监督模块通过图像重建来训练在目标域的模型。与此同时,在源域上训练一个涂抹预测网络协助去除重建图像中的间歇性伪影。使用一个特征的归一化策略来沿着极线对齐匹配特征。最后,使用一个运动不变的一致性模块来在扰动运动之间实现一致性输出。实验结果表明,该模型在从普通图像域到事件相机图像域立体匹配的适应性上得到提升。
在这里插入图片描述


模型架构

  模型主要包含三个部分:涂抹感知自监督模块、特征正则化、运动不变的一致性模块。涂抹感知自监督模块:该模块利用通过图像重建来利用图像的密集特征,从而在目标域的事件相机数据上训练模型。事件相机的数据是一种稀疏的数据表示,它异步地记录像素级的亮度变化信息(事件),而不是以固定的帧率捕获标准的强度图像。因此,只使用事件数据来重建图像时,在物体的边缘容易产生模糊混和失真的伪影,称之为涂抹效应。这种涂抹效应会影响视差预测的精度。为了预测目标域中的涂抹效应,作者在源域的图像数据引入一个模块来估计和抑制重建图像的涂抹效应。此外,作者在构建代价体之间使用特征归一化对匹配特征进行归一化处理。特征归一化化策略常被用于图像模态的域自适应过程中,由于事件相机成像的特殊性(如天空之类的区域事件的稀疏性),对整个像素区域归一化并不高效,传统的归一化方法可能会误导模型偏向于没有事件发生的区域的值。为了减少源域与目标域之间像素的差异,作者沿着极线方向来对特征进行归一化。针对由事件相机运动引起的域偏差,作者提出运动不变一致性模块来预测一致的视差。
在这里插入图片描述
  给定输入源域的图像对 ( I l t − 1 , I r t − 1 ) , ( I l t , I r t ) (I_l^{t-1}, I_r^{t-1}), (I_l^{t}, I_r^{t}) (Ilt1,Irt1),(Ilt,Irt) 与对应的视差标签 d ~ l t \tilde{d}_l^t d~lt,模型的目标是在目标域中从事件流 E l t ^ , E r t ^ E_{l}^{\hat{t}},E_{r}^{\hat{t}} Elt^,Ert^ 预测 t ^ \widehat{t} t 时刻的视差 D l t ^ D_{l}^{\hat{t}} Dlt^(源域与目标域的样本非匹配),使用体素网格来表示事件流(使用 V l t ^ V_l^{\hat{t}} Vlt^ 来代表 E l t ^ E_l^{\hat{t}} Elt^)。
  ADES(Adaptive Dense Event Stereo)主要包含三个模块:涂抹感知自监督模块、特征归一化模块、运动不变一致性模块。在源域,使用一个预训练好的“视频到事件”重建模型( G I → E \mathcal{G}_{I\to E} GIE)来从左右图像序列中提取事件表征: V l t = G I → E ( I l t − 1 , I l t ) , V r t = G I → E ( I r t − 1 , I r t ) . V_l^t=\mathcal{G}_{I\to E}(I_l^{t-1},I_l^t),V_r^t=\mathcal{G}_{I\to E}(I_r^{t-1},I_r^t). Vlt=GIE(Ilt1,Ilt),Vrt=GIE(Irt1,Irt). 将源域生成的体素网格对 ( V l t , V r t ) (V_{l}^{t},V_{r}^{t}) (Vlt,Vrt) 与目标域中的体素网格对 ( V l t ^ , V r t ^ ) (V_l^{\hat{t}},V_r^{\hat{t}}) (Vlt^,Vrt^) 同时送入权值共享的事件流立体匹配模型,在此过程中,作者使用特征归一化来降低域偏差带来的影响。对源域样本对应的视差标签来计算视差损失,使用涂抹感知自监督模块与运动不变一致性模块来对目标域样本的结果计算损失。

Smudge-aware Self-supervision Module (SSM):涂抹感知自监督模块

   该模块旨在使用光度一致性重建的自监督的子任务来提高模型的域自适应能力,如图3下方所示。在这里插入图片描述
  使用一个预训练好的“事件到图像”的网络来将目标域的体素网格映射到图像空间,而在此过程中在图像中的物体边缘会出现模糊,称之为涂抹现象。为此,在目标域训练一个涂抹感知自监督模块来预测涂抹的区域。
  在源域中,如图3上方所示,作者通过随机扭曲域模糊对图像进行增强来模拟涂抹效应的影响。为了模拟由传感器噪声在物体边缘产生的涂抹影响,作者使用超像素算法来解析区域而不是随机选取的矩形区域进行模糊增强 (因为超像素的边缘通常位于物体的边界上,从而更好地反映了由于传感器噪声而在物体边界处产生的涂抹效果)。继而使用一个轻量化的U-Net来预测预测涂抹区域,并使用二元交叉熵损失来计算损失: L s o u r c e m a s k = ∑ i ∈ { l , r } B C E ( M i t , M ~ i t ) . \mathcal{L}_{source}^{mask}=\sum_{i\in\{l,r\}}BCE(M_{i}^{t},\tilde{M}_{i}^{t}). Lsourcemask=i{l,r}BCE(Mit,M~it).
  在目标域,如图3下方所示,作者使用权值共享的涂抹区域预测网络来从重建图像 I ^ l t ^ , I ^ r t ^ \hat{I}_{l}^{\hat{t}},\hat{I}_{r}^{\hat{t}} I^lt^,I^rt^ 预测涂抹区域 M l t ^ , M r t ^ ∈ [ 0 , 1 ] M_{l}^{\hat{t}},M_{r}^{\hat{t}}\in[0,1] Mlt^,Mrt^[0,1],将 I ^ r t ^ \hat{I}_{r}^{\hat{t}} I^rt^ 根据目标域预测的视差图 D l t ^ D_{l}^{\hat{t}} Dlt^来warp到左视图得到 W ˉ r → l ( I ^ r t ^ ) \bar{W}_{r\to l}(\hat{I}_r^{\hat{t}}) Wˉrl(I^rt^)。考虑到左右驶入的涂抹mask图像,光度一致性误差定义为:
L t a r g e t r e c o n = α 1 − SSIM ( I ^ l t ^ ⊙ M t ^ , W r → l ( I ^ r t ^ ) ⊙ M t ^ ) 2 + ( 1 − α ) ∥ I ^ l t ^ ⊙ M t ^ − W r → l ( I ^ r t ^ ) ⊙ M t ^ ∥ 1 , (1) \begin{aligned} \mathcal{L}_{target}^{recon}& =\alpha\frac{1-\text{SSIM}(\hat{I}_{l}^{\hat{t}}\odot M^{\hat{t}},W_{r\to l}(\hat{I}_{r}^{\hat{t}})\odot M^{\hat{t}})}{2} +(1-\alpha)\|\hat{I}_{l}^{\hat{t}}\odot M^{\hat{t}}-W_{r\to l}(\hat{I}_{r}^{\hat{t}})\odot M^{\hat{t}}\|_{1}, \end{aligned}\tag{1} Ltargetrecon=α21SSIM(I^lt^Mt^,Wrl(I^rt^)Mt^)+(1α)I^lt^Mt^Wrl(I^rt^)Mt^1,(1)
其中, M t ^ = 1 − ( M l t ^ ⊙ W r → l ( M r t ^ ) ) , \begin{aligned}M^{\hat{t}}=1-(M_{l}^{\hat{t}}\odot W_{r\to l}(M_{r}^{\hat{t}})),\end{aligned} Mt^=1(Mlt^Wrl(Mrt^)), ⊙ \odot 表示逐元素相乘。SSIM 表示结构一致性损失, α = 0.85 \alpha=0.85 α=0.85

Feature Normalization 特征归一化

  为了减小源域与目标域之间的域偏差,作者使用了特征级归一化方法来对特征增强。但考虑到不同区域事件的稀疏性(在图像上方的天空区域事件较少,而在图像下方的建筑的事件较多)以及极线校正图像的特殊性,作者只沿着极线方向在事件发生的区域进行特征归一化,先沿着通道维度进行归一化:
F ( k , i , j ) = F ( k , i , j ) ∑ c = 0 C − 1 ∥ F ( c , i , j ) ∥ 2 + ε ⋅ (2) F(k,i,j)=\frac{F(k,i,j)}{\sqrt{\sum_{c=0}^{C-1}\left\|F(c,i,j)\right\|^2+\varepsilon}}\cdotp \tag{2} F(k,i,j)=c=0C1F(c,i,j)2+ε F(k,i,j)(2)
继而沿着极线方向归一化:
F ( k , i , j ) = F ( k , i , j ) ∑ w = 0 W − 1 ∥ F ( k , i , w ) ∥ 2 + ε . (3) \begin{aligned}F(k,i,j)&=\frac{F(k,i,j)}{\sqrt{\sum_{w=0}^{W-1}\left\|F(k,i,w)\right\|^2+\varepsilon}}.\end{aligned}\tag{3} F(k,i,j)=w=0W1F(k,i,w)2+ε F(k,i,j).(3)

Motion-invariant Consistency Module (MCM) 运动不变的一致性模块

   该模块旨在解决由不同相机运动引起的域偏差和增强模型对扰动与噪声的鲁棒性。将 T T T 时间内累积的事件 V l t ^ , T , V r t ^ , T V_l^{\hat{t},T},V_r^{\hat{t},T} Vlt^,T,Vrt^,T 送入视差预测模型中得到视差图 D l t ^ . D_{l}^{\hat{t}}. Dlt^. 由于现有的数据集中运动是固定且无法改变的,作者引入一个时间扰动参数 τ \tau τ 来增强快事件流。若事件数据在 T + τ T+\tau T+τ 时间内积累,将其沿着时间通道归一化到0-1,并转换为体素网格后可以模仿快速运动中的事物的事件体素网格。若事件数据在 T − τ T-\tau Tτ 时间内积累,则与慢速运动产生的体素网格相同,如图5所示:
在这里插入图片描述
   将 V l t ^ , T ^ , V r t ^ , T ^ V_l^{\hat{t},\hat{T}},V_r^{\hat{t},\hat{T}} Vlt^,T^,Vrt^,T^ 送入事件立体匹配模型中得到视差图 D ~ l t ^ . \tilde{D}_l^{\hat{t}}. D~lt^.,使用 L 1 L_1 L1 损失来约束增强前后生成的视差图:

L t a r g e t c o n s i s t e n c y = ∥ D l t ^ − D ~ l t ^ ∥ 1 (4) \mathcal{L}_{target}^{consistency}=\|D_l^{\hat{t}}-\tilde{D}_l^{\hat{t}}\|_1\tag{4} Ltargetconsistency=Dlt^D~lt^1(4)


损失函数

   在源域,使用平滑 L 1 L1 L1 损失来约束视差估计模型: L s o u r c e t a s k = smooth L 1 ( d ~ l t − d l t ) \mathcal{L}_{source}^{task}=\text{ smooth}_{L_1}(\tilde{d}_l^t-d_l^t) Lsourcetask= smoothL1(d~ltdlt), 使用二元交叉熵损失来约束涂抹区域: L s o u r c e m a s k = ∑ i ∈ { l , r } B C E ( M i t , M ~ i t ) . \mathcal{L}_{source}^{mask}=\sum_{i\in\{l,r\}}BCE(M_{i}^{t},\tilde{M}_{i}^{t}). Lsourcemask=i{l,r}BCE(Mit,M~it).

  
L t o t a l = L s o u r c e t a s k + λ 1 L s o u r c e m a s k + λ 2 L t a r g e t r e c o n + λ 3 L t a r g e t c o n s i s t e n c y , \begin{aligned}\mathcal{L}^{total}=\mathcal{L}_{source}^{task}+\lambda_1\mathcal{L}_{source}^{mask}+\lambda_2\mathcal{L}_{target}^{recon}+\lambda_3\mathcal{L}_{target}^{consistency},\end{aligned} Ltotal=Lsourcetask+λ1Lsourcemask+λ2Ltargetrecon+λ3Ltargetconsistency,


实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/216388.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【教程】开始使用ipaguard进行代码加固混淆

开始使用ipaguard 前言 iOS加固保护是直接针对ios ipa二进制文件的保护技术,可以对iOS APP中的可执行文件进行深度混淆、加密。使用任何工具都无法逆向、破解还原源文件。对APP进行完整性保护,防止应用程序中的代码及资源文件被恶意篡改。Ipa Guard通过…

springMVC 学习总结(三) 拦截器及统一异常处理

一.拦截器 1.拦截器与过滤器的区别 拦截器 Interceptor 和 过滤器 Filter类似,主要用于拦截用户请求并作出一定处理操作, 但两则也有不同之处,如过滤器只在Servlet前后起作用,是Servlet规范定义的,是Servlt容器才支…

NGINX高性能服务器与关键概念解析

目录 1 NGINX简介2 NGINX的特性3 正向代理4 反向代理5 负载均衡6 动静分离7 高可用8 结语 1 NGINX简介 NGINX(“engine x”)在网络服务器和代理服务器领域备受推崇。作为一款高性能的 HTTP 和反向代理服务器,它以轻量级、高并发处理能力以及…

2-1基础算法-枚举/模拟

文章目录 1.枚举2.模拟 1.枚举 [例1] 特别数的和 评测系统 #include <iostream> using namespace std; bool pa(int x) {while (x) {if (x % 10 2 || x % 10 1 || x % 10 0 || x % 10 9) {return true;}else {x x / 10;}}return false; } int main() {int sum0;i…

【pytest】单元测试文件的写法

前言 可怜的宾馆&#xff0c;可怜得像被12月的冷雨淋湿的一条三只腿的黑狗。——《舞舞舞》 \;\\\;\\\; 目录 前言test_1或s_test格式非测试文件pytest.fixture()装饰器pytestselenium test_1或s_test格式 要么 test_前缀 在前&#xff0c;要么 _test后缀 在后&#xff01; …

低压无功补偿在分布式光伏现场中的应用

摘要&#xff1a;分布式光伏电站由于建设时间短、技术成熟、收益明显而发展迅速&#xff0c;但光伏并网引起用户功率因数异常的问题也逐渐凸显。针对分布式光伏电站接入配电网后功率因数降低的问题&#xff0c;本文分析了低压无功补偿装置补偿失效的原因&#xff0c;并提出了一…

代码随想录算法训练营第46天| 139.单词拆分 多重背包

JAVA代码编写 139.单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 **注意&#xff1a;**不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 示例 1&#xff1a; 输入: s &…

Java - JVM内存模型及GC(垃圾回收)机制

JVM内存模型 JVM堆内存划分&#xff08;JDK1.8以前&#xff09; JVM堆内存划分&#xff08;JDK1.8之后&#xff09; 主要变化在于&#xff1a; java8没有了永久代&#xff08;虚拟内存&#xff09;&#xff0c;替换为了元空间&#xff08;本地内存&#xff09;。常量池&#…

数据库中常用的锁

目录 1、数据库中常用的锁类型 2、常见的数据库 3、以MySQL为例 3.1 MySQL的事务 3.2 MySQL事务的四大特性 1. 原子性&#xff08;Atomicity&#xff09; 2. 一致性&#xff08;Consistency&#xff09; 3. 隔离性&#xff08;Isolation&#xff09; ⭐mysql中的事务隔…

temu上传产品的素材哪里找

在为Temu&#xff08;拼多多跨境电商平台&#xff09;上传产品时&#xff0c;您需要准备一些高质量的素材&#xff0c;包括图片和视频。这些素材对于吸引用户的注意力、展示产品的特点以及提高购买意愿非常重要。但是&#xff0c;很多卖家都不知道从哪里找到这些素材。本文将为…

【Deeplearning4j】小小的了解下深度学习

文章目录 1. 起因2. Deeplearning4j是什么3. 相关基本概念4. Maven依赖5. 跑起来了&#xff0c;小例子&#xff01;6. 鸢尾花分类代码 7. 波士顿房价 回归预测代码 8. 参考资料 1. 起因 其实一直对这些什么深度学习&#xff0c;神经网络很感兴趣&#xff0c;之前也尝试过可能因…

Unity-小工具-LookAt

Unity-小工具-LookAt &#x1f959;介绍 &#x1f959;介绍 &#x1f4a1;通过扩展方法调用 gameObject.LookAtTarget&#xff0c;让物体转向目标位置 &#x1f4a1;gameObject.StopLookat 停止更新 &#x1f4a1;可以在调用时传入自动停止标记&#xff0c;等转向目标位置后自…

.net 洋葱模型

洋葱架构 内层部分比外层更抽象(内层接口&#xff0c;外层实现)。外层的代码只能调用内层的代码&#xff0c;内层的代码可以通过依赖注入的形式来间接调用外层的代码 简单的例子&#xff0c;引用依赖图 demo 接口类库 EmailInfo using System; using System.Collections.…

Python安装包(模块)的八种方法,Python初学者必备知识点

文章目录 1. 使用 easy\_install2. 使用 pip install3. 使用 pipx4. 使用 setup.py5. 使用 yum6. 使用 pipenv7. 使用 poetry8. 使用 curl 管道关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Py…

轻量封装WebGPU渲染系统示例<44>- 材质组装流水线(MaterialPipeline)之灯光和阴影(源码)

目标: 数据化&#xff0c;模块化&#xff0c;自动化 备注: 从这个节点开始整体设计往系统规范的方向靠拢。之前的都算作是若干准备。所以会和之前的版本实现有些差异。 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sa…

apt-get update失败

一、先验证是否有网络 rootlocalhost:~# ping www.baidu.com ping: www.baidu.com: Temporary failure in name resolution rootlocalhost:~# 说明没有网&#xff0c;参考&#xff1a;https://blog.csdn.net/qq_43445867/article/details/132384031 sudo vim /etc/resolv.con…

代码随想录二刷 | 二叉树 |404.左叶子之和

代码随想录二刷 &#xff5c; 二叉树 &#xff5c;404.左叶子之和 题目描述解题思路递归法迭代法 代码实现递归法迭代法 题目描述 404.左叶子之和 给定二叉树的根节点 root &#xff0c;返回所有左叶子之和。 示例 1&#xff1a; 输入: root [3,9,20,null,null,15,7] 输出…

使用node实现链接数据库并对数据库进行增删改查的后端接口

环境 node npm 编辑器 vscode 项目配置 新建目录 用vscode打开 终端输入 npm init -y npm install mysql npm install express 代码 安装好之后的代码页面 新建 在根目录新建api.js文件 const express require(express); const db require(./db/index); const app…

13、RockerMQ消息类型之广播与集群消息

RocketMq中提供两种消费模式&#xff1a;集群模式和广播模式。 集群模式 集群模式表示同一个消息会被同一个消费组中的消费者消费一次&#xff0c;消息被负载均衡分配到同一个消费者上的多个实例上。 还有另外一种平均的算法是AllocateMessageQueueAveragelyByCircle&#xff…

CSS 的背景属性(开发中常用)

目录 1 内容预览 背景颜色 背景图片 背景平铺 背景图片位置(常用) 背景图像固定 背景复合写法 背景色半透明 实现案例 1 内容预览 背景属性可以设置背景颜色、背景图片、背景平铺、背景图片位置、背景图像固定等。 注意&#xff1a; 把表格中的五个属背下来&#xff0c…