3_流量预测综述阅读_Cellular traffic prediction with machine learning: A survey

为了方便学习英语书写,总结的一些话用英语书写

♥目录♥

    • 0、文献来源and摘要
    • 1、introduction
    • 2、prediction problems and datasets
      • 2.1 prediction problems
      • 2.2 dataset
        • (1)Telecom Italia 意大利电信 2015
        • (2)City Cellular Traffic Map (C2TM) 2015
        • (3)、LTE Network Traffic Data_kaggle
        • (4)、Cellular Traffic Analysis Data 2019
        • (5)、China Unicom One Cell Data
        • (6)、Shanghai Telecom dataset 2020
        • (7)、The AIIA data
    • 3、数据预处理和预测模型
      • 3.1 data preprocessing
        • 3.1.1 直接预测 direct-prediction
        • 3.1.2 先分类然后预测
        • 3.1.3 先分解然后预测
      • 3.3 预测模型
        • 3.3.1 统计模型 statistical models
          • (1)ARIMA : Auto-Regressive Integrated Moving Average自回归移动平均模型
          • (2)HW:Holt–Winters三次指数平滑模型
        • 3.3.2 机器学习模型 machine learning models
          • (1)RF:random forest 随机森林
          • (2)LightGBM
          • (3)GPR:Gaussian progress regression
          • (4)MLR:multiple linear regression
          • (5)Prohet
        • 3.3.3 深度学习模型 deep learning models
          • (1)FFNNs:feed-forward neural networks前馈神经网络
          • (2)CNN
          • (3)RNN
          • (4)LSTM
          • (5)GRU
          • (6)ConvLSTM
          • (7)LSTM+attention
          • (8)CNN+RNN

0、文献来源and摘要

在这里插入图片描述

  • 摘要:
    • review the relevant studies on cellular traffic prediction
    • classify the prediction problems as the temporal(时间的)and spatiotemporal prediction problems
    • 人工智能的预测模型分为:statistical, machine learning, deep learning

1、introduction

流量预测的challenge:

  • complex internal(内部的)patterns hidden in the historical traffic data
  • pratical deployment(实际部署):a gap between high-preformance prediction model and real-world systems
    这篇综述的贡献性:
  • classification of cellular prediction problems to four workflows and three model
    • workflow : direct-prediction, classification-then-prediction, decomposition-then-prediction, and clustering-then-
      prediction
    • model : statistical, machine learning, and deep learning
  • a comprehensive(广泛的) collection of eight open datasets
  • evaluation metrics 评估指标
  • potential applications and directions

2、prediction problems and datasets

2.1 prediction problems

  • temporal prediction problem:
    -
    在这种最简单的类型中,只使用历史流量数据中的时间依赖性
  • spatiotemporal prediction problem:
    • the connected users have moved and connected from one base station to another base station, with the process of handover(切换)
      在这里插入图片描述
      在多个基站或多个区域内的流量,除了时间依赖关系,还考虑了它们的空间依赖关系
      the objective is to predict the entire traffic distribution in a given area or only at the hotspots(热点地区)
  • 这两种问题都可以看做监督学习:moving windows
    • 收集到的流量数据被视为univariate单变量时间序列,对未来的时间步(time steps)的流量预测基于固定长度的历史数据
      在这里插入图片描述
  • 衡量流量:
    • SMS/call service/internet usage service
    • physical resource block utilization (利用率)
    • number of connected users
  • 流量数据通过基站收集,然后通过cellular network operator 将不同时间粒度的数据进行聚合
    • 流量需求是由网关上布置的专用探头来监控GPRS隧道协议?(这是啥?
    • 一般的假设流量数据只在一个基站内使用(没有传输)或者传输到一个central server中央服务器中(需要足够的计算资源
    • 小的改进: 流量数据不再是全部传输到中央服务器中,而是按照数据对预测精度的贡献性先对数据进行排序,然后再从基站传输到中央服务器中
    • 少数情况下,流量数据是由用户端收集的
    • 大多数时间粒度是5min到1h
  • 流量预测问题的分类:
    在这里插入图片描述
    • univariate temporal prediction 单变量时域预测
      • N N N个时间步的历史数据: X = { x 1 , x 2 , . . . , x N } \mathcal{X}=\{x_1,x_2,...,x_N\} X={x1,x2,...,xN}
      • 预测第 N + 1 N+1 N+1个时间步的 x N + 1 x_{N+1} xN+1
      • y = f ( X ) y=f(\mathcal{X}) y=f(X)
    • univariate spatiotemporal prediction 单变量时空预测
      • 流量数据从标量 x i x_i xi变成矢量 x i ⃗ \vec{x_i} xi
      • x i ⃗ \vec{x_i} xi :不同基站的数据使用率
    • multivariate temporal prediction 多变量时域预测
      • x i ⃗ \vec{x_i} xi :SMS, call, and data usages from the same base station
    • multivariate spatiotemporal prediction 多变量时空预测
      • 里面的元素是 x i ⃗ \vec{x_i} xi : 不同空间区域的不同变量
      • 把整个的矩阵变成向量:当不同的空间区域存在于一个规则的网格中时,可以将流量格式化为具有相同网格大小的矩阵

2.2 dataset

(1)Telecom Italia 意大利电信 2015

链接指路

  • 数据集介绍:
    • This dataset was collected in the city of Milan, Italy, from November 1, 2013, to January 1, 2014.
    • 空域被分为100x100的网格,每个网格是235x235平方米
    • 通过分析call detail record(CDR)每十分钟每个网格提取不同的信息(SMSs, calls, and Internet usage data)
    • 这个数据集可以用于单变量、多变量的时空预测流量问题
(2)City Cellular Traffic Map (C2TM) 2015

链接:https://github.com/caesar0301/city-cellular-traffic-map

  • 数据集介绍:
    • 13,269 base stations in a medium-sized city in China from August 19, 2012, to August 26, 2012.
    • Each data record contains the base station id(基站id), a timestamp(时间戳), number of mobile users(用户数), number of transferred packets(传输包的数量), and number of transferred bytes(传输字节数) every hour. base station location(基站位置)
(3)、LTE Network Traffic Data_kaggle

click on this link:https://www.kaggle.com/naebolo/predict-traffic-of-lte-network(sos没有了)

  • 数据集介绍:
    • 4G data usage within 57 cells in 24 h for one year, from October 23, 2017, to October 22, 2018
    • the locations of these 57 cells are not available->temporal type
(4)、Cellular Traffic Analysis Data 2019

https://github.com/AminAzari/cellular-traffic-analysis

  • 数据集介绍:
    • the traffic packets captured from the user side on several Android devices by using virtual private network tunneling
    • packet arrival/departure time, source/destination IP addresses, communication protocol (e.g., UDP, TCP, SSL), and encrypted payload
(5)、China Unicom One Cell Data

链接:https://github.com/JinScientist/traffic-data-5min/blob/master/traffic_one_cell.csv

  • 数据集介绍:
    • 2016年1月1日至2017年5月1日17个月
    • time steps: 5 min
    • 对中国移动的4G网络的CDR data进行统计
    • 只有一个基站
    • 适用于单变量时间预测问题
(6)、Shanghai Telecom dataset 2020

链接:http://sguangwang.com/TelecomDataset.html

  • 数据集介绍:
    • 2014年6月1日至11月30日在中国上海收集了3233个基站和9481部手机
    • 这个数据集提功力每个用户会话的开始时间和结束时间以及对应基站的位置
    • 这个数据集本来适用于边缘计算的,但是也可以用于流量预测
(7)、The AIIA data

link: https://github.com/Phil-Shawn/DMNN

  • 数据集介绍:
    • 2017年1月1日至2018年11月15日三个匿名区域的小时流量数据
    • 预测问题属于时间类型

3、数据预处理和预测模型

3.1 data preprocessing

4种workflows:direct-prediction, classification-then-prediction, decomposition-then-prediction, and clustering-then-prediction
需要不同的数据预处理方式

3.1.1 直接预测 direct-prediction

在大多研究中输入的histical data and prediction target已经是正确的格式了(time series or input vectors
只需要通用的数据预处理:

  • 数据归一化:data scaling through data standardization or min-max normalization
  • 数据缺失问题:data imputation
    • forward filling
    • moving average
    • bayesian gaussian tensor decomposition 贝叶斯高斯张量分解
      在这里插入图片描述
3.1.2 先分类然后预测

the raw data packets: 从一个基站或者一个用户端收集到的不同应用或者服务的流量数据
流量分类的基础:deep packet inspection(检测) techniques
绕后使用ML或者DL将数据包分为:Email, text message, video streaming, audio chat, or video call
然后分别对每一种业务进行聚类
使用不同的预测模型来预测不同应用数据的未来流量
在这里插入图片描述
先分类然后预测的好处:

  • 在后续的预测过程中,单个应用的流量预测比或者流量预测更加稳定,更容易达到好的效果
  • 通过对不同应用的数据使用率的观察可以设计相应的管理措施:当更重要的应用需要额外的传输带宽时,可以降低视频流的质量
    另一种分类方式:判断单个小区的流量数据是可预测还是不可预测的(通过朴素贝叶斯分类器)就是用过预测误差实现的
    只有预测误差小的贾占数据才能在之后的预测中使用,减少了训练成本
3.1.3 先分解然后预测

将单个变量的输入流量时间序列分解为多个组件
分别预测每个不同的组件
最终预测的结果是组件的输出的叠加
和先分类在预测不同,组件本身是没有物理意义的

在这里插入图片描述

3.3 预测模型

3.3.1 统计模型 statistical models
(1)ARIMA : Auto-Regressive Integrated Moving Average自回归移动平均模型
  • 单变量时间序列模型
  • 基于三种分量的加权线性组合:自回归分量(AR)、差分分量(I)、移动平均分量(MA)
(2)HW:Holt–Winters三次指数平滑模型
  • 单变量时间序列模型
  • 基于三种分量的组合:simple exponential smoothing, Holt’s ES, Winter’s ES

在这里插入图片描述

3.3.2 机器学习模型 machine learning models
(1)RF:random forest 随机森林
(2)LightGBM
(3)GPR:Gaussian progress regression
(4)MLR:multiple linear regression
(5)Prohet

在这里插入图片描述

3.3.3 深度学习模型 deep learning models
(1)FFNNs:feed-forward neural networks前馈神经网络
(2)CNN
(3)RNN
(4)LSTM
(5)GRU
(6)ConvLSTM
(7)LSTM+attention
(8)CNN+RNN

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/216283.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI写文案工具大全介绍,免费的AI写文案工具

随着人工智能技术的不断发展,AI写文案成为一个备受关注的话题。本文将专注于AI写文案工具,深入探讨各类好用的AI写文案软件。 AI写文案工具介绍: OpenAIs GPT系列: GPT-3是由OpenAI开发的语言模型,能够生成高质量的文…

uniapp点击按钮,防止按钮多次点击多次触发事件【防抖操作】

图片、 一、在根目录下新建common文件并创建common.js文件,输入下面代码 // 防止处理多次点击function noMultipleClicks(methods, info) {// methods是需要点击后需要执行的函数, info是点击需要传的参数let that this;if (that.noClick) {// 第一次点…

C语言leetcode集训二:字符串(1):字符串遍历

今天集训的内容是字符串中的字符串遍历题,仍然是简单题,但也可以掌握一些字符串所必要的知识,加深对字符串的理解,关于字符数组和字符串,字符串的输入输出在这就不再做过多赘述,关于字符串的问题&#xff0…

串口通信(1)-硬件知识

本文讲解串口通信的硬件知识。让读者快速了解硬件知识,为下一步编写代码做基础。 目录 一、概述 二、串口通信分类 2.1信息的传送方向进行分类 2.2同步通信和异步通信 三、串口协议 3.1 RS232 3.1.1 电气特性 3.1.2 连接器的机械特性 3.1.3 连接类型 3.1…

【SpringBoot】入门精简

目录 一、初识 SpringBoot 1.1 介绍 1.2 项目创建 1.3 目录结构 1.4 修改配置 二、SpringBoot 集成 2.1 集成 Mybatis框架 2.2 集成 Pagehepler分页插件 2.3 集成 Druid数据库连接池 2.4 集成 Log日志管理 一、初识 SpringBoot 1.1 介绍 Spring Boot是一个用于简化Sp…

猎豹浏览器如何设置ip使用?socks5在网络安全中有什么优势?

猎豹浏览器如何设置ip使用?socks在网络安全中有什么优势? 一、猎豹浏览器如何设置ip使用? 在使用猎豹浏览器时,可以通过以下步骤来设置IP使用: 1. 打开猎豹浏览器,点击右上角的“菜单”按钮,在…

有趣的数学 数学建模入门三 数学建模入门示例两例 利用微积分求解

一、入门示例1 1、问题描述 某宾馆有150间客房,经过一段时间的经营,该宾馆经理得到一些数据:如果每间客房定价为200元,入住率为55%;定价为180元,入住率为65%;定价为160元…

圆通单号查询,圆通速递物流查询,用表格导出单号的详细物流信息

批量查询圆通速递单号的物流信息,以表格的形式导出单号的详细物流信息。 所需工具: 一个【快递批量查询高手】软件 圆通速递单号若干 操作步骤: 步骤1:运行【快递批量查询高手】软件,并登录 步骤2:点击主…

解决canvas清晰度问题devicePixelRatio

视频教程 解决canvas清晰度的问题【渡一教育】_哔哩哔哩_bilibili 检测网页本身是否缩放 ,即缩放倍率 window.devicePixelRatio 为了获得清晰图像,需要遵循以下公式 原始尺寸样式尺寸*缩放倍率 在项目中,canvas里的原始尺寸一般与css中的样式尺寸一样,所以在写js代码时,涉…

数据库 02-03补充 聚合函数--一般聚合分组和having

聚合函数: 01.一般的聚合函数: 举个例子: 一般聚合函数是用于单个元祖,就是返回一个数值。 02.分组聚合:可以返回多个元祖 举个例子: 分组的注意: 主要的是根据分组的话,一个…

盲盒小程序搭建:年入百W的“盲盒经济”

盲盒作为一种新的商业模式,正引领着新的消费热潮。尤其是在当下年轻人群体中,盲盒的影响力非常大。 盲盒作为一种新的消费方式,因其具备的不确定性、未知性、惊喜性,刺激着消费者的购买欲。在现在的商城中,盲盒的身影…

AutoAnimate动画库,仅需一行代码

插件官网,支持react,vue AutoAnimate - Add motion to your apps with a single line of code 自动加动画原理 AutoAnimate 加动画的原理也很简单,监听绑定的 DOM 节点里 DOM 结构变化,自动添加对应的过渡动画: 增加子节点 > 渐入动画…

Redis(三):常见数据类型:List、Set、Zset

List 列表 列表类型是用来存储多个有序的字符串, 如图: a、b、c、d、e 五个元素从左到右组成 了⼀个有序的列表,列表中的每个字符串称为元素(element),⼀个列表最多可以存储个元素。在 Redis 中&#xff…

华为儿童手表,运动的引领者

作为家长,你是否经常为孩子的健康担忧,也一直在寻找一种可以与孩子一起运动、记录运动数据并让孩子产生对运动感兴趣的设备? 那不妨试试华为儿童手表,一款拥有专业的运动模式的智能手表。孩子只需简单操作手表,就能开…

自动化测试 —— Web自动化三大报错

Web自动化三大报错有哪些呢?接下来给大家讲讲。 Web自动化三大报错(Exception) 1. Exception1:no such element(没有在页面上找到这个元素) reason1:元素延迟加载了 solution: …

深度学习 Day11——T11优化器对比实验

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 文章目录 前言一、我的环境二、代码实现与执行结果1.引入库2.设置GPU(如果使用的是CPU可以忽略这步)3.导入数据4.查…

Docker部署Mysql5.7x和Myslq8.x

Docker部署Mysql5.7x和Myslq8.x 文章目录 1.部署mysql5.7.x2.部署mysql8.x3.创建用户授权及远程登录3.1 mysql5.7创建用户授权及远程登录3.2 mysql8创建用户授权及远程登录 4.总结 1.部署mysql5.7.x 在D盘下的mysql目录下新建如下目录: D:\mysql\conf\my.cnf内容如下…

centos7 docker Mysql8 搭建主从

Mysql8 搭建主从 docker的安装docker-compose的安装安装mysql配置主从在master配置在slave中配置在master中创建同步用户在slave中连接 测试连接测试配置测试数据同步遇到的问题id重复错误执行事务出错,跳过错误my.cnf 不删除多余配置的错误可能用到的命令 docker的…

【ARM Trace32(劳特巴赫) 使用介绍 13 -- Trace32 断点 Break 命令篇】

文章目录 1. Break.Set1.1 TRACE32 Break1.1.1 Break命令控制CPU的暂停1.2 Break.Set 设置断点1.2.1 Trace32 程序断点1.2.2 读写断点1.2.2.1 变量被改写为特定值触发halt1.2.2.2 设定非值触发halt1.2.2.4 变量被特定函数改写触发halt1.2.3 使用C/C++语法设置断点条件1.2.4 使用…