【玩转TableAgent数据智能分析】利用TableAgent进行教育数据分析

文章目录

    • 前言
    • 九章云极(DataCanvas)介绍
    • 前期准备
    • 样例数据集体验
      • 1. 样例数据集-Airbnb民宿价格&评价 体验
        • 1.1 体验一
        • 1.2 体验二
    • 教育数据的分析(TableAgent&ChatGLM对比)
      • 1. 上传文件
      • 2. 数据分析与对比
        • 2.1 分析一
          • 2.1.1 TableAgent与ChatGLM柱状图展示
          • 2.1.2 TableAgent与ChatGLM分析对比
          • 2.1.3 结论对比
        • 2.2 分析二
          • 2.2.1 TableAgent与ChatGLM柱状图展示
          • 2.2.2 TableAgent与ChatGLM分析对比
          • 2.2.3 结论对比
        • 2.3 分析三
          • 2.3.1 TableAgent与ChatGLM柱状图展示
          • 2.3.2 TableAgent与ChatGLM分析对比
          • 2.3.3 结论对比
    • 总结

前言

在当今数据驱动的时代,有效管理和处理大规模数据变得至关重要。面对这一挑战,九章云极DataCanvas推出了其革命性的产品——TableAgent数据分析智能体,标志着数据处理和分析进入了一个新的时代。在这篇博文中,我们将深入探讨 TableAgent 如何为教育数据分析提供前所未有的便利和效率。

TableAgent 不仅仅是一个数据处理工具,它是一个全面的解决方案,旨在简化复杂的数据工作流程。无论是数据的采集、存储、处理还是分析,TableAgent 都能以其先进的技术和直观的操作界面提供卓越的支持。这使得即使是最复杂的数据任务也变得简单易行,极大地提升了数据处理的效率和准确性。

在接下来的文章中,我们将通过对教育数据的分析进行深入探讨 TableAgent 的核心特性、应用场景。

九章云极(DataCanvas)介绍

数字化时代,数据分析的重要性犹如空气般无处不在。九章云极DataCanvas公司自主研发的TableAgent数据分析智能体是建立在DataCanvas Alaya九章元识大模型之上,它为企业提供了强大的私有化部署能力。Alaya元识大模型为TableAgent提供了关键性的技术支持。这些模型通过协同工作,能够完成复杂的分析任务。

TableAgent具有出色的意图理解能力、分析建模能力和洞察力。在充分理解用户意图后,TableAgent能够自主地利用统计科学、机器学习、因果推断等高级建模技术从数据中挖掘价值。同时,TableAgent还能提供深刻的分析观点和指导行动的见解,使每个人都能成为高级数据分析师。

此外,TableAgent支持企业级数据分析,无论是大规模还是高性能的需求都能满足。它还支持领域微调,可以实现专业化的数据分析。在保证数据安全的同时,TableAgent实现了会话式数据分析,满足了"所需即所得"的需求。值得一提的是,TableAgent提供了透明化的过程,方便审计监督。

TableAgent的发布,让人人都是数据分析师从梦想照进现实。

TableAgent具有以下特点:

  • 会话式数据分析,所需即所得
  • 私有化部署,数据安全
  • 支持企业级数据分析,大规模、高性能
  • 支持领域微调,专业化
  • 透明化过程,审计监督

image.png

前期准备

  1. 注册账号,可以点击链接前往注册,这里只需要通过手机号验证码就可以直接注册,无需乱七八糟的填写。image.png
  2. 目前注册完成每天可以免费使用5次,如果不够的还,可以申请认证一下,认证通过就可以每天体验15次啦。

样例数据集体验

1. 样例数据集-Airbnb民宿价格&评价 体验

目前在在TableAgent上有多个样例数据集(Airbnb民宿价格&评价、swiggy外卖平台数据、银行客户流失预警、全球大学排名信息、全球大城市人口2022-2023、电影点评、咖啡馆商品信息、某平台商品订单记录、Top250连锁餐饮的销售数据)来供大家使用去体验。下面我们就选择Airbnb民宿价格&评价这个样例数据集去先体验一下。image.png

1.1 体验一

首先我先根据提示提问了:

我准备全家去东南亚旅行,我每天的预算在200~500美元之间,需要3~6个床位,目的地是Thailand和Malaysia,去哪更划算呢?帮我画个图比较下性价比哈。

TableAgent正确的画出了柱状图,并给出最后的结论:

总的来说,如果预算有限,您可能更倾向于选择Malaysia,因为每个房源的价格相对较低。但请注意,床位数可能是影响价格的关键因素,所以如果床位数是您的重要考虑因素,您可能需要在Thailand选择6床位的房源。

image.png

1.2 体验二

接着我问了:

我准备冬季去海南旅行,预算200~400人民币之间,需要两个床位,有哪些性价比高的民宿?给出数据对比图

然后TableAgent两轮尝试之后,并没有给出答案,后续我查看了一下当前的数据集中不包含中国城市,包含的国家城市如下图,这里大家实验的时候要注意。
image.png

后续又根据TableAgent推荐的问题,进行了部分尝试,也都能够正常的给出答案和数据图。也能够打开详情,看到TableAgent进行数据分析以及代码操作,十分直观。

教育数据的分析(TableAgent&ChatGLM对比)

1. 上传文件

首先我们将昌平区各校平台数据.csv上传到两个平台。

注意:

  1. 目前线上的TableAgent版本仅支持CSV格式的数据文件。
  2. cvs文件大小不要超过5M。

上传成功后,会在对话中看到成功加载。并可以打开详情查看数据表。
image.png
数据集包含以下内容:
区域:学校所在的区域
学校:学校的名称
是否公立学校:学校是否为公立学校
学生年级:学生所在的年级
一对一辅导人数:参与一对一辅导的学生人数
学生提问人数:提交提问的学生人数
一对多辅导人数:参与一对多辅导的学生人数
微课观看人数:观看微课的学生人数
总参与人数:参与各种活动(包括一对一辅导、提问、一对多辅导和微课观看)的学生总人数
发起一对一辅导次数:发起的一对一辅导次数
提问数:提交的提问数量
参与互动课堂次数:参与互动课堂的次数
微课观看次数:观看微课的次数
参与总次数:参与各种活动(包括一对一辅导、提问、一对多辅导、互动课堂和微课观看)的总次数
年级人数:各年级的学生人数
参与率:参与各种活动的学生占年级总人数的百分比
人均参与次数:每个学生平均参与活动的次数
校均参与次数:各学校平均参与活动的次数
各校累计参与情况(9.01–):各学校从9月1日到当前日期的累计参与情况百分比

2. 数据分析与对比

需求一:首先我们想通过数据集分析得出平台参与率前五的学校,可以通过参与率对学校进行更加细致化的推广平台。

2.1 分析一

问:数据集中共有多少所学校,参与人数是多少,帮我把各个学校简单分析解读一下,参与人数最高的5个学校画个图看看

2.1.1 TableAgent与ChatGLM柱状图展示

TableAgent:TableAgent
ChatGLM:ChatGLM

2.1.2 TableAgent与ChatGLM分析对比
TableAgentChatGLM
分析对比image.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.png
2.1.3 结论对比
TableAgentChatGLM
结论1. 数据集中共有60所学校。这些学校的参与人数总和为260。2. 从这些数据中,我们可以看到,参与人数最多的学校是北京市第一六一中学回龙观学校,该学校的参与人数为37,其次是北京市昌平区西府冠华学校,参与人数为26。第三名是北京市昌平区亭自庄学校,参与人数为23。第四名是北京市昌平区第二中学,参与人数为12。第五名是某学校,参与人数为9。3. 从图中可以看出,北京市第一六一中学回龙观学校的参与人数最多,其次是北京市昌平区西府冠华学校,第三名是北京市昌平区亭自庄学校,第四名是北京市昌平区第二中学,第五名是某学校。这可能与这些学校的地理位置、学校规模、学校设施等因素有关。同时,也可能与这些学校的教学内容、教学方法等因素有关,以吸引更多的学生参与1. 数据集中共有 60 所学校。2. 数据集中共有 260 名学生参与了活动。3. 北京市昌平区上地实验学校:参与人数为 62;北京市上地实验学校(中学部):参与人数为 52;北京市海淀实验中学(中学部):参与人数为 40;北京市海淀实验中学(小学部):参与人数为 38;北京市上地实验学校(小学部):参与人数为 36。

需求二:我们想通过数据集分析得出每个学校每个年级一对一辅导的参与率,最终得出哪个年级的参与率最高,从而加强该年级的师资投入。

2.2 分析二

问:分析每个年级的一对一辅导参与人数并进行排序,并最终汇总给出哪个年级参与人数最高,并画出图

2.2.1 TableAgent与ChatGLM柱状图展示

TableAgent:TableAgent
ChatGLM:ChatGLM

2.2.2 TableAgent与ChatGLM分析对比
TableAgentChatGLM
分析对比image.pngimage.pngimage.pngimage.pngimage.png
2.2.3 结论对比
TableAgentChatGLM
结论1. 根据我们的数据分析,一对一辅导参与人数最多的年级是八年级。以下是我们统计的每个年级的一对一辅导参与人数的详细数据:七年级:47;九年级:16;八年级:52;2. 从这个数据中,我们可以看出八年级年级的学生参加一对一辅导的次数最多,这可能是因为八年级年级的学生在学校的时间较长,对老师的依赖性较强,因此更愿意参加一对一的辅导。从上图中,我们可以清晰地看到每个年级的一对一辅导参与人数。从图表中,我们可以看出八年级的一对一辅导参与人数最高。

需求三:我们想通过数据集分析得出学生更喜欢通过哪种方式进行学习。

2.3 分析三

问:总结一对一辅导人数、学生提问人数、一对多辅导人数、微课观看人数,画出折线图,并总结出学生更爱通过那种方式进行学习

2.3.1 TableAgent与ChatGLM柱状图展示

TableAgent:TableAgent
ChatGLM:ChatGLM

2.3.2 TableAgent与ChatGLM分析对比
TableAgentChatGLM
分析对比image.pngimage.pngimage.pngimage.png
2.3.3 结论对比
TableAgentChatGLM
结论从图中,我们可以看到,一对一辅导人数、学生提问人数、一对多辅导人数和微课观看人数在不同年级和学校之间的变化趋势。这有助于我们更好地理解学生们的学习习惯和偏好。总的来说,学生们更喜欢通过一对一辅导进行学习,这可能是因为一对一的辅导方式更能满足学生的个别化需求。同时,学生们也可能更倾向于使用微课等方式进行远程学习,这可能是因为微课的形式更灵活,可以满足不同学生的学习需求。从上图中,我们可以看到以下几点:一对一辅导人数:在一开始就有一个明显的增长,之后保持相对稳定的水平。学生提问人数:参与人数相对较少,并且随着时间的推移,增长缓慢。一对多辅导人数:参与人数有一个轻微的增长,但整体水平仍然较低。微课观看人数:参与人数随着时间的推移而增长,并且在某个时间点有一个显著的增加。根据这些趋势,我们可以得出以下结论:学生更倾向于使用一对一辅导和微课观看的方式进行学习。一对一辅导和微课观看的参与人数随着时间的推移而增长,而学生提问和一对多辅导的参与人数增长缓慢。在某个时间点之后,微课观看的参与人数超过了其他方式的参与人数,这可能是因为微课观看在某些学校中得到了更多的推广和应用。综上所述,学生更爱通过一对一辅导和微课观看的方式进行学习。

总结

到此我们对TableAgent的使用与体验基本就完成了,我们通过和ChatGLM进行了比对,两个模型给出的的可视化视图基本上是一致的。最后一个分析三有些区别是TableAgent折线图增加了年级元素,更能让我了解每个年级段学生的学习方式倾向。两个模型给出的数据分析思路也十分的实用,对数据分析有很大的参考价值。给出的结论个人更倾向于TableAgent,它能够给出你答案的同时分析出该结论产生的可能原因,并且能够给出拓展查询的建议,比较nice。同时在使用两个平台的时候,TableAgent相比之下表现更加出色:

  1. ChatGLM出现了多次新建沙盒上传了数据集被销毁的问题,而不得重新新建沙盒并上传数据集。对比TableAgent上传数据集之后,可以一直使用,比较稳定。
  2. 简单易用:TableAgent提供了直观的用户界面和简单的操作流程,使得用户无需具备专业的编程或统计知识即可进行数据分析
  3. 易于理解:TableAgent通过展示思维流程图的方式,帮助用户更好地理解整个数据分析与思考的过程。这种可视化的方式不仅让开发人员更加易于理解,还提供了相应的执行代码,使得开发人员可以更加高效地进行数据分析和处理。
  4. 可视化分析功能。TableAgent可以将分析结果以图表的形式呈现,让用户更直观地了解数据的分布和趋势,帮助用户做出更准确的决策。

TableAgent的推出,让数据分析不再是专业人士的专利。它使得每个人都能轻松地成为数据分析师,不再需要掌握复杂的编程技能和统计学知识。通过简单的提问,TableAgent就能为用户提供深入的数据分析结果和见解。
这一创新不仅降低了数据分析的门槛,还极大地提高了数据处理和分析的效率。在过去,数据分析往往需要耗费大量的时间和精力,而现在,借助TableAgent的强大功能,人们可以在短时间内完成复杂的数据分析任务。
此外,TableAgent还推动了数据处理和分析领域的技术进步。它的出现激发了更多的创新和研究,使得数据分析工具不断优化和完善。同时,随着更多的人参与到数据分析中来,数据的利用价值也得到了更好的发挥,为各行各业带来了更多的可能性。
总之,TableAgent的推出标志着数据处理和分析进入了一个新的时代。在这个时代里,每个人都可以轻松地成为数据分析师,共同探索数据背后的奥秘。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/216164.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web服务器之——建立两个基于ip地址访问的网站

目录 准备工作:web服务器搭建 第一步:挂载 第二步:编辑配置文件 第三步:安装软件包 第四步:启动httpd 查看配置文件: 第五步:设置防火墙状态: 重启服务: 查看状态&#xff1…

Leetcode—2961.双模幂运算【中等】

2023每日刷题&#xff08;五十六&#xff09; Leetcode—2961.双模幂运算 实现代码 class Solution { public:int func(int a, int b) {int ans 1;for(int i 0; i < b; i) {ans * a;ans % 10;}return ans;}int func2(int a, int b, int m) {int ans 1;for(int i 0; i …

评论送书:以企业架构为中心的SABOE数字化转型五环法

01 传统企业数字化转型面临诸多挑战 即将过去的2023年&#xff0c;chatGPT大模型、数据资产入表等事件的发生&#xff0c;标志着数字经济正在加速发展。数字经济是人类社会继农业经济、工业经济之后的第三种经济形态&#xff0c;将推动生产方式、生活方式和治理方式深刻变革&a…

2-Spring

2-Spring 文章目录 2-Spring项目源码地址Spring概述Spring特点&#xff08;优点&#xff09;Spring相关学习网站基于Maven的Spring框架导入Spring的组成及拓展 Spring-IOC--原型理解IOC-原型--示例开发示例-常规开发示例-Set函数&#xff08;IOC原型&#xff09;开发示例-对比思…

C++STL的list(超详解)

文章目录 前言构造函数capacitylist的访问insertswapsort 前言 看一下list, 在任意位置可以进行O(1)插入删除的操作。 它怎么实现这个东西&#xff1f;它其实就是一个带头双向循环链表。 #成员函数 构造函数 这里面的构造函数学完string和vector之后已经相当熟悉了。 capaci…

如何将用户有过行为的item用list形式记录下来,另外如何计算list里的个数

导语&#xff1a; 最近做项目&#xff0c;发现有些语法想一想是知道&#xff0c;但实际操作起来跟想的情况不一样哈哈。不是遇见bug就是输出的结果不是自己想要的&#xff0c;CSDN跟知乎找了很多没怎么解决&#xff0c;后面多摸索多实操终于解决&#xff01; test_data[item_…

数据结构-05-跳表SkipList

1-什么是跳表 跳表SkipList是一种随机化的数据结构&#xff0c;基于并联的链表&#xff0c;实现简单&#xff0c;插入、删除、查找的复杂度均为 O(logN)&#xff08;大多数情况下&#xff0c;因为是实现上是概率问题&#xff09;&#xff0c;因为其性能匹敌红黑树且实现较为简单…

msvcr110.dll丢失的解决方法有哪些-常见方法教程

我们在日常使用电脑中经常遇到各种问题&#xff0c;比如系统文件丢失是最常见的&#xff0c;其中msvcr110.dll丢失也是非常常见的问题&#xff0c;那么msvcr110.dll文件为什么会丢失&#xff0c;丢失对电脑有什么影响呢&#xff0c;丢失了有什么解决方法&#xff1f;今天小编就…

Synchronized 优化

目录 前言 重点 一、 轻量级锁 二、锁膨胀 三、重量锁 四、偏向锁 五、其他优化 我的其他博客 前言 Java synchronized 是一种机制&#xff0c;可以保证多个线程在访问共享资源时的同步性。synchronized 关键字可以用于方法或代码块上&#xff0c;当一个线程获取了这个对…

【动态规划】03斐波那契数列模型_最小花费爬楼梯_C++(easy1)

题目链接&#xff1a;leetcode使用最小花费爬楼梯 目录 题目解析&#xff1a; 算法原理 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 编写代码 题目解析&#xff1a; 题目让我们求达到楼梯顶部的最低花费. 由题可得&#xff1a; cost[i] 是从楼梯第 i 个…

第6章:知识建模:概述、方法、实例

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

java--LinkedHashSet集合的底层原理和TreeSet集合

1.LinkedHashSet底层原理 ①依然是基于哈希表(数组、链表、红黑树)实现的 ②但是&#xff0c;它的每个元素都额外的多了一个双链表的机制记录它前后元素的位置。 2.TreeSet ①特点&#xff1a;不重复、无索引、可排序(默认升序排序&#xff0c;按照元素的大小&#xff0c;由…

Nacos热更新(动态获取配置)

写在前面&#xff1a;各位看到此博客的小伙伴&#xff0c;如有不对的地方请及时通过私信我或者评论此博客的方式指出&#xff0c;以免误人子弟。多谢&#xff01;如果我的博客对你有帮助&#xff0c;欢迎进行评论✏️✏️、点赞&#x1f44d;&#x1f44d;、收藏⭐️⭐️&#…

el-date-picker 限制选择范围最大为一年,设置快捷选项,设置默认时间

el-date-picker 限制选择范围最大为一年&#xff1a; 主要代码为&#xff1a;:picker-options"pickerOptions" 以及 blur"pickerBlur" <el-date-pickerv-model"transactionTime"type"daterange"style"width: 200px"size…

盒马补贴量价-2021KDD

概述&#xff1a; 电商商品定价三个关键问题&#xff1a; 在只有观测数据的时候&#xff0c;怎么构建价格弹性&#xff0c;现在来看这就是一个反事实推断的问题&#xff0c;不仅是如何做的问题&#xff0c;还有如何评估的问题。长周期的规划决策问题怎么建模 & 求解&#…

从零开始学UniApp微信小程序开发:头部适配技巧让你事半功倍!

在 UniApp 中&#xff0c;在微信小程序开发中&#xff0c;头部适配可以通过修改 pages.json 中的 navigationStyle 配置项来实现&#xff0c;具体操作步骤如下&#xff1a; 1.进入 pages.json 文件 在 UniApp 项目的根目录中找到 pages.json 文件&#xff0c;打开该文件。 2…

Win11专业版,eNSP启动失败,错误代码40 解决方法

微软Win11系统默认开启的 Virtualization-based Security &#xff08;VBS&#xff09;“基于虚拟化的安全性”会导致游戏、跑分性能下降。VBS 基于虚拟化的安全性&#xff0c;通常称为内核隔离。使用硬件虚拟化在内存中创建安全区域&#xff0c;为其他安全功能提供了一个安全平…

Appilied energy论文复现:含多类型充电桩的电动汽车充电站优化配置方法程序代码!

本程序参考Applied energy论文《Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities》&#xff0c;文中主要对多类型充电桩的电动汽车充电站进行优化配置&#xff0c;程序较为简单和基础&#xff0c;具有较强的可扩展性和…

adb命令学习记录

1、 adb ( android debug bridge)安卓调试桥&#xff0c;用于完成电脑和手机之间的通信控制。 xcode来完成对于ios设备的操控&#xff0c;前提是有个mac电脑。 安卓系统是基于linux内核来进行开发的。 2、adb的安装: 本身 adb是 android SDK 其中自带的工具&#xff0c;用于完…

排坑指南之STM32串口接收队列定时异常导致接收失败

背景: 公司的项目,今天讲的这部分功能主要是和IC卡读取板进行串口通讯,然后将读取回来的IC卡保存在本地。我在调试的过程中发现了一个问题,上电刚开始的阶段,程序是好用的,能读取回来IC卡卡号,然后运行一段时间之后,就读取不回来卡号了,刷卡没有响应。 摘要: 讲述STM…