使用socket实现UDP版的回显服务器

文章目录

  • 1. Socket简介
  • 2. DatagramSocket
  • 3. DatagramPacket
  • 4. InetSocketAddress
  • 5. 实现UDP版的回显服务器

在这里插入图片描述

1. Socket简介

Socket(Java套接字)是Java编程语言提供的一组类和接口,用于实现网络通信。它基于Socket编程接口,提供了一种简单而强大的方式来实现网络应用程序。

socket类库提供了丰富的方法和功能,用于处理网络通信的各个方面。它支持TCP和UDP协议,可以实现可靠的、面向连接的通信(TCP)或不可靠的、无连接的通信(UDP)。Java Socket还提供了一些高级功能,如多线程处理、异步通信、加密通信等,以满足不同网络应用的需求。

本文主要使用Socket实现UDP版的客户端和服务器

  • DatagramSocket 是UDP Socket,用于发送和接收UDP数据报。

  • DatagramPacket是UDP Socket发送和接收的数据报。

2. DatagramSocket

DatagramSocket是Java网络编程中用于实现UDP协议的类。它是基于Socket类的子类,用于发送和接收UDP数据报。

DatagramSocket 的构造方法:

方法说明
DatagramSocket()创建一个UDP数据报套接字的socket,绑定本机任意一个随机端口(一般用户客户端)
DatagramSocket(int port)创建一个UDP数据套接字的socket,绑定指定的port端口(一般用于服务端)

DatagramSocket的常用方法如下:

方法说明
void receive(DatagramPacket p)从此套接字接收数据报,如果没有接收到数据报,会阻塞等待
void send(DatagramPacket p)从此套接字发送数据包
void close()关闭数据报套接字

3. DatagramPacket

DatagramPacket是Java网络编程中用于封装和解析UDP数据报(Datagram)的类。它用于在DatagramSocket中发送和接收UDP数据报

DatagramPacket的构造方法:

方法说明
DatagramPacket(byte[] buf, int length)构造一个DatagramPacket以用来接收数据报,接收的数据保存在 字节数组(第一个参数buf)中,接收指定长度(第二个参数 length)
DatagramPacket(byte[] buf, int offset, int length, SocketAddress address)构造一个DatagramPacket以用来发送数据报,发送的数据为字节 数组(第一个参数buf)中,从0到指定长度(第二个参数 length)。address指定目的主机的IP和端口号

DatagramPacket的常用方法:

方法说明
InetAddress getAddress()从接收的数据报中,获取发送端主机IP地址;或从发送的数据报中,获取 接收端主机IP地址
int getPort()从接收的数据报中,获取发送端主机的端口号;或从发送的数据报中,获取接收端主机端口号
byte[] getData()获取数据报中的数据

4. InetSocketAddress

InetSocketAddress是Java网络编程中用于表示IP地址和端口号的类。它是SocketAddress类的子类,用于在网络通信中指定主机的地址和端口。

简单介绍一下InetSocketAddress的构造方法:

InetSocketAddress(InetAddress addr,int port)创建一个Socket地址,包含IP地址和端口号

5. 实现UDP版的回显服务器

回显服务器(Echo Server)是一种简单的网络服务器应用,它接收客户端发送的数据,并将接收到的数据原样返回给客户端。

客户端代码:

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.SocketException;
import java.util.Scanner;public class UdpEchoClient {private DatagramSocket socket = null;private String serverIp;private int serverPort;public UdpEchoClient(String serverIp, int serverPort) throws SocketException {socket = new DatagramSocket(serverPort);this.serverIp = serverIp;this.serverPort = serverPort;}public void start() throws IOException {System.out.println("客户端上线!");Scanner scanner = new Scanner(System.in);while (true) {// 读取用户输入的内容System.out.println("-> ");String request = scanner.next();// 构造 UDP请求,并发送给服务器DatagramPacket reqPacket = new DatagramPacket(request.getBytes(), request.getBytes().length,InetAddress.getByName(this.serverIp), this.serverPort);socket.send(reqPacket);// 从服务器读取响应DatagramPacket respPacket = new DatagramPacket(new byte[4096], 4096);socket.receive(respPacket);String resp = new String(respPacket.getData(), 0, respPacket.getLength());}}public static void main(String[] args) throws IOException {UdpEchoClient echoClient = new UdpEchoClient("127.0.0.1", 6666);echoClient.start();}
}

服务器代码:

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;public class UdpEchoServer {private DatagramSocket socket = null;// port 为服务器要绑定的端口public UdpEchoServer(int port) throws SocketException {socket = new DatagramSocket(port);}/*** 服务器启动方法*/public void start() throws IOException {System.out.println("服务器启动!");while (true) {// 读取请求并解析DatagramPacket reqPacket = new DatagramPacket(new byte[4096], 4096);socket.receive(reqPacket);// 解析请求String req = new String(reqPacket.getData(), 0, reqPacket.getLength());// 计算响应String resp = process(req);// 将响应返回给客户端DatagramPacket respPacket = new DatagramPacket(resp.getBytes(), resp.getBytes().length,reqPacket.getSocketAddress());socket.send(respPacket);// 打印日志System.out.printf("[%s:%d] req: %s;resp: %s\n", reqPacket.getSocketAddress().toString(),reqPacket.getPort(), req, resp);}}/*** 根据请求计算响应* 因为是 回显服务器,直接返回即可** @param req*/private String process(String req) {return req;}public static void main(String[] args) throws IOException {UdpEchoServer echoServer = new UdpEchoServer(6666);echoServer.start();}
}

运行流程:
在这里插入图片描述

运行结果:

在这里插入图片描述

在这里插入图片描述

另外服务器是给多个客户端提供服务器的,IDEA默认是无法启动多个客户端的,因此手动设置

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/21607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv36-形态学操作-膨胀 cv2.dilate()

膨胀操作是形态学中另外一种基本的操作。膨胀操作和腐蚀操作的作用是相反的,膨胀操作能对图像的边界进行扩张。膨胀操作将与当前对象(前景)接触到的背景点合并到当前对象内,从而实现将图像的边界点向外扩张。如果图像内两个对象的…

分布式应用:ELFK集群部署

目录 一、理论 1.ELFK集群 2.filebeat 3.部署ELK集群 二、实验 1. ELFK集群部署 三、总结 一、理论 1.ELFK集群 (1)概念 ELFK集群部署(FilebeatELK),ELFK ES logstashfilebeatkibana 。 数据流 架构 2.fi…

零基础C#编写上位机如何入门?

想要学习C#编写上位机,需要具备以下基础知识: C#编程语言基础.NET框架的使用WinForm窗体应用程序开发技术基本的数据结构和算法知识 为了方便理解,我将为您列出一些入门步骤: 学习C#基础语法和.NET框架,掌握基本编程…

【Ajax】笔记-JQuery发送jsonp请求

前端 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>jQuery-jsonp</title><style>#re…

python+opencv实现显示摄像头,截取相关图片,录取相关视频

实时显示摄像头图像 按下空格键&#xff0c;截取图片 按下tab键&#xff0c;开始录制摄像内容&#xff0c;再次按下&#xff0c;结束录制 按下Esc键&#xff0c;关闭窗口 import cv2 import numpy#第几章图片 img_count0InitVideoFalse #第几个视频 video_count0 video_flagFa…

【Linux 网络】 传输层协议之TCP协议 TCP的三次握手和四次挥手

TCP协议 TCP协议段格式谈谈什么是 “可靠” 和 “不可靠”TCP协议段——序号与确认序号TCP协议段——窗口大小TCP协议段 —— 六个标志位确认应答机制&#xff08;ACK&#xff09;超时重传机制连接管理机制TCP 的三次握手四次挥手TCP三次握手四次挥手总结图 滑动窗口流量控制拥…

将Visio和Excel导出成没有白边的PDF文件

1、VISIO如何无白边导出pdf格式 在使用Latex时&#xff0c;要导入矢量图eps格式。但是VISIO无法输出eps格式&#xff0c;这就需要将其导出为pdf。但是导出pdf时&#xff0c;往往会有大量的白边。VISIO无白边导出pdf格式的方法如下&#xff1a; 1.文件——开发工具——显示sha…

OpenLayers入门,OpenLayers解析通过fetch请求的GeoJson格式数据,并叠加要素文字标注,以行政区划边界为例

专栏目录: OpenLayers入门教程汇总目录 前言 本章讲解如何使用OpenLayers通过fetch请求geojson数据,然后通过OpenLayers解析为Feature要素叠加到图层上,并且通过动态设置标注方式显示要素属性为文字标注。 本章还是以行政区划边界为例,这个示例在开发中比较常用,建议收藏…

利用OpenCV实现图像拼接

一、介绍 图像拼接. 二、分步实现 要实现图像拼接&#xff0c;简单来说有以下几步&#xff1a; 对每幅图进行特征点提取对对特征点进行匹配进行图像配准把图像拷贝到另一幅图像的特定位置对重叠边界进行特殊处理 PS&#xff1a;需要使用低版本的opencv&#xff0c;否则无法使…

【C语言学习】C语言的基础数据类型

一、数据类型 1.整型 short(短整型) int&#xff08;整型 long&#xff08;长整型&#xff09; long long&#xff08;长整型&#xff09;没有特殊需要&#xff0c;就用int 2.浮点型 float&#xff08;单精度型&#xff09; double&#xff08;双精度型&#xff…

Django的生命周期流程图(补充)、路由层urls.py文件、无名分组和有名分组、反向解析(无名反向解析、有名反向解析)、路由分发、伪静态

一、orm的增删改查方法&#xff08;补充&#xff09; 1. 查询resmodels.表名(类名).objects.all()[0]resmodels.表名(类名).objects.filter(usernameusername, passwordpassword).all()res models.表名(类名).objects.first() # 判断&#xff0c;判断数据是否有# res如果查询…

SAM在医学图像分割的一些研究(Segment Anything Model for Medical Images?(2023))

使用预训练模型通过两种主要模式进行分割&#xff0c;包括自动一切和手动提示(例如&#xff0c;点和框)。SAM在各种自然图像分割任务上取得了令人印象深刻的效果。然而&#xff0c;由于医学图像的形态复杂、解剖结构精细、物体边界不确定和复杂、物体尺度大&#xff0c;使得医学…

iOS——Block one

块类似于匿名函数或闭包&#xff0c;在许多其他编程语言中也存在类似的概念。 可以访问上下文&#xff0c;运行效率高 Block 以下是块的一些基本知识&#xff1a; 块的定义&#xff1a;块是由一对花括号 {} 包围的代码片段&#xff0c;可以包含一段可执行的代码。块的定义使…

Kotlin~Memento备忘录模式

概念 备忘录模式是一种行为型设计模式&#xff0c;用于捕获和存储对象的内部状态&#xff0c;并在需要时将对象恢复到之前的状态。 备忘录模式允许在不暴露对象内部实现细节的情况下&#xff0c;对对象进行状态的保存和恢复。 角色介绍 Originator&#xff1a;原发器&#x…

NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读

论文信息 题目&#xff1a;NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 作者&#xff1a;Antoni Rosinol, John J. Leonard&#xff0c; Luca Carlone 代码&#xff1a;https://github.com/ToniRV/NeRF-SLAM 来源&#xff1a;arxiv 时间&#xff…

【零基础学Rust | 基础系列 | 数据结构】元组,数组,向量,字符串,结构体

文章标题 简介&#xff1a;一&#xff0c;元组&#xff1a;1&#xff0c;定义元组&#xff1a;2&#xff0c;访问元组元素&#xff1a;3&#xff0c;元组解构&#xff1a;4&#xff0c;元组在函数中的应用&#xff1a; 二&#xff0c;数组&#xff1a;1&#xff0c;数组的声明和…

Redis-1

Redis 理论部分 redis 速度快的原因 1、纯内存操作 2、单线程操作&#xff0c;避免了频繁的上下文切换和资源争用问题&#xff0c;多线程需要占用更多的 CPU 资源 3、采用了非阻塞 I/O 多路复用机制 4、提供了非常高效的数据结构&#xff0c;例如双向链表、压缩页表和跳跃…

QT以管理员身份运行

以下配置后&#xff0c;QT在QT Creator调试时&#xff0c;或者生成的.exe程序&#xff0c;都将会默认以管理员身份运行。 一、MSVC编译器 1、在Pro文件中添加以下代码&#xff1a; QMAKE_LFLAGS /MANIFESTUAC:\"level\requireAdministrator\ uiAccess\false\\" …

纯css实现登录表单动效

效果图&#xff1a; 代码展示 // 我这边用的是elementUI表单校验&#xff0c;更改的样式。 <el-form:model"form":rules"rules"ref"fromList":hide-required-asterisk"true"><el-form-item prop"account"><…

全网最强,Python接口自动化测试实战-接口参数关联(购物实例)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 什么是参数关联&a…