阶段五:深度学习和人工智能(掌握使用TensorFlow或PyTorch进行深度学习)

掌握使用TensorFlow或PyTorch进行深度学习需要具备一定的编程基础和数学基础,包括编程语言、数据结构、算法、线性代数、概率论和统计学等方面的知识。以下是掌握使用TensorFlow或PyTorch进行深度学习的一些基本要求:

  1. 了解深度学习的基本概念和原理,包括神经网络、反向传播、优化器、损失函数等。
  2. 熟悉Python编程语言,掌握基本的语法和数据结构,以及常用的Python库和工具,如NumPy、Pandas、Matplotlib等。
  3. 掌握常用的深度学习框架,如TensorFlow或PyTorch,了解其基本原理和核心概念,如张量、层、模型等。
  4. 掌握常用的优化器和损失函数,如梯度下降、随机梯度下降、均方误差等。
  5. 掌握常用的深度学习模型,如多层感知器、卷积神经网络、循环神经网络等。
  6. 掌握常用的深度学习应用领域,如图像分类、语音识别、自然语言处理等。
  7. 掌握常用的深度学习实验工具和数据集,如MNIST手写数字数据集、CIFAR-10图像数据集等。
  8. 掌握深度学习模型的训练和评估方法,如交叉验证、超参数调整等。
  9. 了解深度学习模型的部署和优化方法,如模型压缩、量化等。
  10. 不断学习和探索新的深度学习技术和应用领域,保持对深度学习的热情和好奇心。

总之,掌握使用TensorFlow或PyTorch进行深度学习需要不断学习和实践,深入理解深度学习的原理和应用,不断提高自己的编程和数学能力。
以下是一些简单的示例代码,分别使用TensorFlow和PyTorch实现了一个简单的多层感知器(MLP)对MNIST手写数字数据集进行分类。

TensorFlow 示例

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam# 加载 MNIST 数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0# 构建模型
model = Sequential([Flatten(input_shape=(28, 28)),Dense(128, activation='relu'),Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer=Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=5)# 评估模型
model.evaluate(test_images, test_labels)

PyTorch 示例

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader# 加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)# 构建模型
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()self.fc1 = nn.Linear(28 * 28, 128)self.fc2 = nn.Linear(128, 10)self.relu = nn.ReLU()self.softmax = nn.Softmax(dim=1)def forward(self, x):x = self.flatten(x)x = self.fc1(x)x = self.relu(x)x = self.fc2(x)x = self.softmax(x)return xmodel = MLP()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())# 训练模型
for epoch in range(5):  # 多批次循环遍历数据集多次running_loss = 0.0for i, data in enumerate(train_loader, 0):  # 获取输入数据,标签等信息inputs, labels = data[0], data[1]  # 输入数据,标签数据optimizer.zero_grad()  # 清空梯度信息,也就是把梯度置为0,防止梯度累加干扰训练结果。outputs = model(inputs)  # 将输入数据喂给模型得到预测值,进行前向传播。outputs是预测值。注意输入数据是tensor格式。此步包含了前向传播的过程。loss = criterion(outputs, labels)  # 计算损失值,使用的是交叉熵损失函数。此步包含了损失函数的计算过程。注意输入数据是tensor格式。此步已经得到了损失值。注意损失值是一个标量。是一个具体的数值。是一个一维tensor。不是一个矩阵,不是一个向量。是一个具体的数值。是一个标量。是一个一维tensor。重要的事情说三遍!!!。此步包含了损失函数的计算过程。注意输入数据是tensor格式。重要的事情说三遍!!!。这个loss是标量。记住!!!!是标量,不是向量,不是矩阵。是一维的tensor,是一个具体的数值。重要的事情说三遍!!!。此步已经得到了损失值。注意损失值是一个标量。是一个具体的数值。是一个一维tensor。重要的事情说三遍!!!)。这个loss是包含了每个样本损失值的平均值,是一个标量(一个具体的数值,而不是一个矩阵或者向量)这个平均值是根据批量样本计算得到的,包含了批量样本的整体信息,用来指导模型优化方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/215413.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】计算机视觉(基础篇)

目录 前言 几个高频面试题目 计算机视觉中常见的错误及解决方案 1.翻转图像和关键点

AnotherRedisDesktopManager安装使用 (redis可视化客户端)

下载 下载地址 AnotherRedisDesktopManager 发行版 - Gitee.com 安装 双击安装 修改安装路径 运行

pt36项目短信OAth2.0

5、短信验证码 1、注册容联云账号,登录并查看开发文档(以下分析来自接口文档) 2、开发文档【准备1】:请求URL地址1.示例:https://app.cloopen.com:8883/2013-12-26/Accounts/{}/SMS/TemplateSMS?sig{}ACCOUNT SID# s…

Docker安装与使用

Docker 1.初识Docker Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题? Docker允许开发中将应用、依赖、函数库、配置一起打包,形成可移植镜像Docker应用运行在容器中,使用沙箱机制,相互隔离 Docker…

phpstorm中使用 phpunit 时的配置和代码覆盖率测试注意点

初始化一个composer项目,composer.json配置文件如下 {"name": "zingfront/questions-php","type": "project","require": {"php": "^7.4"},"require-dev": {"phpunit/phpun…

geemap学习笔记024:从Earth Engine中获取遥感图像的缩略图

前言 遥感图像的缩略图通常是以较小的数据量对整景影像有一个全面的展示,便于分享和观察,本节就介绍一下如何获取遥感图像的缩略图。 1 导入库并显示地图 import ee import geemap import osee.Initialize() Map geemap.Map() Map2 加载数据 roi e…

多维时序 | MATLAB实现RIME-CNN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现RIME-CNN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现RIME-CNN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现RIME-…

项目管理工具:选品开发管理的最佳实践

Zoho Projects是一个功能强大的项目管理工具,可以帮助电商企业实现选品开发过程的有序管理,提升选品开发效率。 以下是使用Zoho Projects进行选品开发管理的步骤: 1.创建项目: 登录Zoho Projects,在主页上点击"新…

NSSCTF Crypto靶场练习,21-30wp

文章目录 [AFCTF 2018]你能看出这是什么加密么[LitCTF 2023]你是我的关键词(Keyworld)[NSSCTF 2022 Spring Recruit]classic[SWPUCTF 2021 新生赛]crypto4[LitCTF 2023]家人们!谁懂啊,RSA签到都不会 (初级)[SWPUCTF 2021 新生赛]crypto5[LitCTF 2023]Is …

亚信科技AntDB携手蓝凌软件,助推企业数字化办公转型升级

随着企业数字化转型的深入,企业对于协同办公、移动门户、数字运营、智能客服等方面的需求越来越高,数智化正成为催生新动能和新优势的关键力量。数字化的办公平台可以帮助企业实现各类信息、流程的集中化、数字化和智能化管理,为企业管理者提…

面试 JVM 八股文五问五答第一期

面试 JVM 八股文五问五答第一期 作者:程序员小白条,个人博客 相信看了本文后,对你的面试是有一定帮助的! ⭐点赞⭐收藏⭐不迷路!⭐ 1.JVM内存布局 Heap (堆区) 堆是 OOM 故障最主要的发生区域。它是内存…

大数据毕业设计之前端03:logo、menu的折叠展开实现

关键字:BuildAdmin、pinia、logo、aside、menu、菜单折叠、Vue、ElementUI 前言 上一篇文章中,借助aside的实现讲了一些开发的小技巧,以及css的解读。本篇文章主要写一下如何填充aside的内容。 aside主要是由两个部分组成的:log…

数据结构与算法-Rust 版读书笔记-2线性数据结构-栈

数据结构与算法-Rust 版读书笔记-2线性数据结构-栈 一、线性数据结构概念 数组、栈、队列、双端队列、链表这类数据结构都是保存数据的容器,数据项之间的顺序由添加或删除时的顺序决定,数据项一旦被添加,其相对于前后元素就会一直保持位置不…

电脑入门基础知识

1.电脑键盘个数一般都是有多少个? 答:一般情况下,电脑键盘只有一个。但是,也有一些特殊的情况,例如游戏玩家可能会使用额外的游戏键盘,或者一些专业人士可能会使用多个键盘来提高工作效率。但是在大多数情…

[Spring~源码] ControllerAdvice揭秘

在Spring MVC中,我们经常使用ControllerAdvice注解,可以实现全局统一异常处理、全局数据绑定等功能。但是,它的实现原理是什么呢?在本文中,我们将深入探究ControllerAdvice的实现原理。 文章目录 什么是ControllerAdvi…

docker-compose.yml文件配置详解

简介 Compose 是用于定义和运行多容器 Docker 应用程序的工具。通过 Compose,您可以使用 YML 文件来配置应用程序需要的所有服务。然后,使用一个命令,就可以从 YML 文件配置中创建并启动所有服务。 docker compose文件是一个yaml格式的文件&a…

【Hadoop_04】HDFS的API操作与读写流程

1、HDFS的API操作1.1 客户端环境准备1.2 API创建文件夹1.3 API上传1.4 API参数的优先级1.5 API文件夹下载1.6 API文件删除1.7 API文件更名和移动1.8 API文件详情和查看1.9 API文件和文件夹判断 2、HDFS的读写流程(面试重点)2.1 HDFS写数据流程2.2 网络拓…

学会面向对象经典练习题21道

1.面向对象练习:设计小狗类 需求: 抽象形成一个小狗类Dog 属性:名字name 年龄age 品种kind 主人host 价格price 功能: 跑run:无参,打印:小狗Dog跑的老快了~ 吃eat:参数int n&#x…

当MongoDB主键为String时,mongoTemplate无法根据id查询的问题

MongoDB推荐使用ObjectId作为主键,但国内的开发都知道,事情往往不如人所愿,当我们真的出现了“_id”主键的类型为String时,且还必须想用mongoTemplate.findOne或findList时,直接使用该方法会导致查询结果为空。 因为m…

https 协议

目录 加密方式 对称加密 非对称加密 非对称加密 非对称加密 非对称加密 对称加密 AC证书 AC证书内容 数据摘要 数据签名 在我们前面学习的http协议里面,我们发送的内容都是明文传输的,所以在安全上并不安全,但是在现在信息发达的时…