智能优化算法应用:基于人工蜂群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工蜂群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工蜂群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工蜂群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工蜂群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工蜂群算法

人工蜂群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108292748
人工蜂群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工蜂群算法参数如下:

%% 设定人工蜂群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明人工蜂群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/215242.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零构建属于自己的GPT系列5:模型部署1(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)

🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:数据预处理 从零构建属于自己的GPT系列2:模型训…

2023年国赛高教杯数学建模A题定日镜场的优化设计解题全过程文档及程序

2023年国赛高教杯数学建模 A题 定日镜场的优化设计 原题再现 构建以新能源为主体的新型电力系统,是我国实现“碳达峰”“碳中和”目标的一项重要措施。塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。   定日镜是塔式太阳能光热发电站(以下…

【Fastadmin】根据Fieldlist键值组件做一个等级配置的完整示例

目录 1.效果展示: ​编辑 2.建表: 3.html页面 4.controller控制器 5.js 6.model 1.效果展示: 2.建表: 表名:fa_xxfb_config /*Navicat Premium Data TransferSource Server : rootSource Server Type …

深入Docker命令行:探索常用命令和实用技巧

Docker命令行界面是每个容器开发者的得力工具。在这篇文章中,将深入探讨一系列常用的Docker命令,以及一些实用技巧,通过更丰富的示例代码,帮助大家更全面地理解和运用Docker命令行工具。 1. Docker基本命令 1.1 镜像操作 深入了…

用 CSS 写一个渐变色边框的输入框

Using_CSS_gradients MDN 多渐变色输入框&#xff0c;群友问了下&#xff0c;就试着写了下&#xff0c;看了看 css 渐变色 MDN 文档&#xff0c;其实很简单&#xff0c;代码记录下&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta ch…

使用FFMPEG转码,转单声道,转标准WAV,转PCM

本文为使用FFMPEG命令行的方式处理音频&#xff0c;来获取想要得到的音频文件。 零、使用命令行查看编码封装信息 格式&#xff1a;ffprobe.exe -show_format inputfile 例子&#xff1a;ffprobe.exe -show_format .\stereo_44_16bit.wav 运行结果为下图&#xff1a; 如图可…

西南科技大学数字电子技术实验四(基本触发器逻辑功能测试及FPGA的实现)预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) (1)D触发器 特征方程: Q…

ChatGPT/GPT4应用:文本、论文、编程、绘图等,提高工作效率及科研项目开发能力

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

排序-选择排序与堆排序

文章目录 一、选择排序二、堆排序三、时间复杂度四、稳定性 一、选择排序 思想&#xff1a; 将数组第一个元素作为min&#xff0c;然后进行遍历与其他元素对比&#xff0c;找到比min小的数就进行交换&#xff0c;直到最后一个元素就停止&#xff0c;然后再将第二个元素min&…

【单调栈】【二分查找】LeetCode: 2454.下一个更大元素 IV

作者推荐 【动态规划】【广度优先】LeetCode2258:逃离火灾 本文涉及的基础知识点 二分查找算法合集 单调栈 题目 给你一个下标从 0 开始的非负整数数组 nums 。对于 nums 中每一个整数&#xff0c;你必须找到对应元素的 第二大 整数。 如果 nums[j] 满足以下条件&#xff…

音视频技术开发周刊 | 323

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 Meta牵头组建开源「AI复仇者联盟」&#xff0c;AMD等盟友800亿美元力战OpenAI英伟达 超过50家科技大厂名校和机构&#xff0c;共同成立了全新的人工智能联盟。以开源为旗号…

es6从url中获取想要的参数

第一种方法 很古老&#xff0c;通过 split 方法慢慢截取&#xff0c;可行是可行但是这个方法有一个弊端&#xff0c;因为 split 是分割成数组了&#xff0c;只能按照下标的位置获取值&#xff0c;所以就是参数位置一旦发生变化&#xff0c;那么获取到的值也就错位了 let user…

利用python将data:image/jpg; base64,格式数据转化下载为图片

在做爬虫爬取图片时&#xff0c;发现有的图片url是用“data:image/jpg;base64” 开头的&#xff0c;例如下图 部分开头样式如下&#xff1a; 1、data:image/jpg; base64, 2、data:image/png; base64, 3、data:image/webp;base64, 利用python进行代码进行图片下载&#xff0c;…

先进的Web3.0实战热门领域NFT项目几个总结分享

非同质化代币&#xff08;NFT&#xff09;的崛起为游戏开发者提供了全新的机会&#xff0c;将游戏内物品和资产转化为真正的可拥有和交易的数字资产。本文将介绍几个基于最先进的Web3.0技术实践的NFT游戏项目&#xff0c;并分享一些相关代码。 Axie Infinity&#xff08;亚龙无…

智能优化算法应用:基于猫群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于猫群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于猫群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.猫群算法4.实验参数设定5.算法结果6.参考文献7.MA…

件夹和文件比较软件VisualDiffer mac功能介绍

VisualDiffer mac是一款运行在MacOS上的文件夹和文件快速比较工具。VisualDiffer可以对不同文件夹中文件或文档做出比较或者比较两个文件的路径。还可以通过UNIS diff命令快速、标准和可靠的比较出各类不同的文件夹和文件结果&#xff0c;使用不同的颜色直观地显示。 VisualDif…

酷滴科技出席浦发银行第七届国际金融科技创新大赛

12月7日&#xff0c;浦发银行全球金融科技创新大赛在上海展开决赛。本届大会以“科技金融&#xff0c;激发创新力量”为主题&#xff0c;聚焦金融行业数字化转型过程中的痛点与难点&#xff0c;旨在探讨新时代下金融科技的新角色、新机遇以及新挑战。酷滴科技CEO张沈分享了酷滴…

12.11

1.q&#xff0c;w&#xff0c;e亮led1&#xff0c;2&#xff0c;3&#xff1b; a&#xff0c;s&#xff0c;d灭led1&#xff0c;2&#xff0c;3&#xff1b; main.c #include "uar1.h"#include "led.h"void delay(int ms){int i,j;for(i0;i<ms;i){for…

SQL中的三值逻辑:TRUE、FALSE 和 UNKNOWN。

在SQL中&#xff0c;通常采用三值逻辑处理条件表达式的真值。这种逻辑是基于三种可能的真值状态&#xff1a;TRUE、FALSE 和 UNKNOWN。 TRUE&#xff08;真&#xff09;&#xff1a; 表示条件为真或成立。 FALSE&#xff08;假&#xff09;&#xff1a; 表示条件为假或不成立。…

7 Linux 内核移植

一、编译 ST 的 Linux 系统 1. 压缩源码 首先先下载 ST 官方源码&#xff0c;之前章节已经下载过了&#xff0c;直接输入以下命令&#xff1a; cd linux/atk-mpl/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/ 然…