大数据分析与应用实验任务十一
实验目的
-
通过实验掌握spark Streaming相关对象的创建方法;
-
熟悉spark Streaming对文件流、套接字流和RDD队列流的数据接收处理方法;
-
熟悉spark Streaming的转换操作,包括无状态和有状态转换。
-
熟悉spark Streaming输出编程操作。
实验任务
一、DStream 操作概述
-
创建 StreamingContext 对象
登录 Linux 系统后,启动 pyspark。进入 pyspark 以后,就已经获得了一个默认的 SparkConext 对象,也就是 sc。因此,可以采用如下方式来创建 StreamingContext 对象:
from pyspark.streaming import StreamingContext sscluozhongye = StreamingContext(sc, 1)
如果是编写一个独立的 Spark Streaming 程序,而不是在 pyspark 中运行,则需要在代码文件中通过类似如下的方式创建 StreamingContext 对象:
from pyspark import SparkContext, SparkConf from pyspark.streaming import StreamingContext conf = SparkConf() conf.setAppName('TestDStream') conf.setMaster('local[2]') sc = SparkContext(conf = conf) ssc = StreamingContext(sc, 1) print("创建成功,lzy防伪")
二、基本输入源
- 文件流
-
在 pyspark 中创建文件流
首先,在 Linux 系统中打开第 1 个终端(为了便于区分多个终端,这里记作“数据源终端”),创建一个 logfile 目录,命令如下:
cd /root/Desktop/luozhongye/ mkdir streaming cd streaming mkdir logfile
其次,在 Linux 系统中打开第二个终端(记作“流计算终端”),启动进入 pyspark,然后,依次输入如下语句:
from pyspark import SparkContext from pyspark.streaming import StreamingContext ssc = StreamingContext(sc, 10) lines = ssc.textFileStream('file:///root/Desktop/luozhongye/streaming/logfile') words = lines.flatMap(lambda line: line.split(' ')) wordCounts = words.map(lambda x : (x,1)).reduceByKey(lambda a,b:a+b) wordCounts.pprint() ssc.start() ssc.awaitTermination()
-
采用独立应用程序方式创建文件流
#!/usr/bin/env python3 from pyspark import SparkContext, SparkConf from pyspark.streaming import StreamingContext conf = SparkConf() conf.setAppName('TestDStream') conf.setMaster('local[2]') sc = SparkContext(conf = conf) ssc = StreamingContext(sc, 10) lines = ssc.textFileStream('file:///root/Desktop/luozhongye/streaming/logfile') words = lines.flatMap(lambda line: line.split(' ')) wordCounts = words.map(lambda x : (x,1)).reduceByKey(lambda a,b:a+b) wordCounts.pprint() ssc.start() ssc.awaitTermination() print("2023年12月7日lzy")
保存该文件,并执行以下命令:
cd /root/Desktop/luozhongye/streaming/logfile/ spark-submit FileStreaming.py
- 套接字流
-
使用套接字流作为数据源
新建一个代码文件“/root/Desktop/luozhongye/streaming/socket/NetworkWordCount.py”,在NetworkWordCount.py 中输入如下内容:
#!/usr/bin/env python3 from __future__ import print_function import sys from pyspark import SparkContext from pyspark.streaming import StreamingContextif __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCount.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingNetworkWordCount")ssc = StreamingContext(sc, 1)lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b)counts.pprint()ssc.start()ssc.awaitTermination()
使用如下 nc 命令生成一个 Socket 服务器端:
nc -lk 9999
新建一个终端(记作“流计算终端”),执行如下代码启动流计算:
cd /root/Desktop/luozhongye/streaming/socket /usr/local/spark/bin/spark-submit NetworkWordCount.py localhost 9999
-
使用 Socket 编程实现自定义数据源
新建一个代码文件“/root/Desktop/luozhongye/streaming/socket/DataSourceSocket.py”,在 DataSourceSocket.py 中输入如下代码:
#!/usr/bin/env python3 import socket# 生成 socket 对象 server = socket.socket() # 绑定 ip 和端口 server.bind(('localhost', 9999)) # 监听绑定的端口 server.listen(1) while 1:# 为了方便识别,打印一个“I’m waiting the connect...”print("I'm waiting the connect...")# 这里用两个值接收,因为连接上之后使用的是客户端发来请求的这个实例# 所以下面的传输要使用 conn 实例操作conn, addr = server.accept()# 打印连接成功print("Connect success! Connection is from %s " % addr[0])# 打印正在发送数据print('Sending data...')conn.send('I love hadoop I love spark hadoop is good spark is fast'.encode())conn.close()print('Connection is broken.') print("2023年12月7日lzy")
执行如下命令启动 Socket 服务器端:
cd /root/Desktop/luozhongye/streaming/socket /usr/local/spark/bin/spark-submit DataSourceSocket.py
新建一个终端(记作“流计算终端”),输入以下命令启动 NetworkWordCount 程序:
cd /root/Desktop/luozhongye/streaming/socket /usr/local/spark/bin/spark-submit NetworkWordCount.py localhost 9999
-
RDD 队列流
Linux 系统中打开一个终端,新建一个代码文件“/root/Desktop/luozhongye/ streaming/rddqueue/ RDDQueueStream.py”,输入以下代码:
#!/usr/bin/env python3 import time from pyspark import SparkContext from pyspark.streaming import StreamingContextif __name__ == "__main__":print("")sc = SparkContext(appName="PythonStreamingQueueStream")ssc = StreamingContext(sc, 2)# 创建一个队列,通过该队列可以把 RDD 推给一个 RDD 队列流rddQueue = []for i in range(5):rddQueue += [ssc.sparkContext.parallelize([j for j in range(1, 1001)], 10)]time.sleep(1)# 创建一个 RDD 队列流inputStream = ssc.queueStream(rddQueue)mappedStream = inputStream.map(lambda x: (x % 10, 1))reducedStream = mappedStream.reduceByKey(lambda a, b: a + b)reducedStream.pprint()ssc.start()ssc.stop(stopSparkContext=True, stopGraceFully=True)
下面执行如下命令运行该程序:
cd /root/Desktop/luozhongye/streaming/rddqueue /usr/local/spark/bin/spark-submit RDDQueueStream.py
三、转换操作
-
滑动窗口转换操作
对“套接字流”中的代码 NetworkWordCount.py 进行一个小的修改,得到新的代码文件“/root/Desktop/luozhongye/streaming/socket/WindowedNetworkWordCount.py”,其内容如下:
#!/usr/bin/env python3 from __future__ import print_function import sys from pyspark import SparkContext from pyspark.streaming import StreamingContextif __name__ == "__main__":if len(sys.argv) != 3:print("Usage: WindowedNetworkWordCount.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingWindowedNetworkWordCount")ssc = StreamingContext(sc, 10)ssc.checkpoint("file:///root/Desktop/luozhongye/streaming/socket/checkpoint")lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))counts = lines.flatMap(lambda line: line.split(" ")) \.map(lambda word: (word, 1)) \.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10)counts.pprint()ssc.start()ssc.awaitTermination()
为了测试程序的运行效果,首先新建一个终端(记作“数据源终端”),执行如下命令运行nc 程序:
cd /root/Desktop/luozhongye/streaming/socket/ nc -lk 9999
然后,再新建一个终端(记作“流计算终端”),运行客户端程序 WindowedNetworkWordCount.py,命令如下:
cd /root/Desktop/luozhongye/streaming/socket/ /usr/local/spark/bin/spark-submit WindowedNetworkWordCount.py localhost 9999
在数据源终端内,连续输入 10 个“hadoop”,每个 hadoop 单独占一行(即每输入一个 hadoop就按回车键),再连续输入 10 个“spark”,每个 spark 单独占一行。这时,可以查看流计算终端内显示的词频动态统计结果,可以看到,随着时间的流逝,词频统计结果会发生动态变化。
-
updateStateByKey 操作
在“/root/Desktop/luozhongye/streaming/stateful/”目录下新建一个代码文件 NetworkWordCountStateful.py,输入以下代码:
#!/usr/bin/env python3 from __future__ import print_function import sys from pyspark import SparkContext from pyspark.streaming import StreamingContextif __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCountStateful.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")ssc = StreamingContext(sc, 1)ssc.checkpoint("file:///root/Desktop/luozhongye/streaming/stateful/")# RDD with initial state (key, value) pairsinitialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)])def updateFunc(new_values, last_sum):return sum(new_values) + (last_sum or 0)lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))running_counts = lines.flatMap(lambda line: line.split(" ")) \.map(lambda word: (word, 1)) \.updateStateByKey(updateFunc, initialRDD=initialStateRDD)running_counts.pprint()ssc.start()ssc.awaitTermination()
新建一个终端(记作“数据源终端”),执行如下命令启动 nc 程序:
nc -lk 9999
新建一个 Linux 终端(记作“流计算终端”),执行如下命令提交运行程序:
cd /root/Desktop/luozhongye/streaming/stateful /usr/local/spark/bin/spark-submit NetworkWordCountStateful.py localhost 9999
四、把 DStream 输出到文本文件中
下面对之前已经得到的“/root/Desktop/luozhongye/streaming/stateful/NetworkWordCountStateful.py”代码进行简单的修改,把生成的词频统计结果写入文本文件中。
修改后得到的新代码文件“/root/Desktop/luozhongye/streaming/stateful/NetworkWordCountStatefulText.py”的内容如下:
#!/usr/bin/env python3
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContextif __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCountStateful.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")ssc = StreamingContext(sc, 1)ssc.checkpoint("file:///root/Desktop/luozhongye/streaming/stateful/")# RDD with initial state (key, value) pairs initialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)])def updateFunc(new_values, last_sum):return sum(new_values) + (last_sum or 0)lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))running_counts = lines.flatMap(lambda line: line.split(" ")) \.map(lambda word: (word, 1)) \.updateStateByKey(updateFunc, initialRDD=initialStateRDD)running_counts.saveAsTextFiles("file:///root/Desktop/luozhongye/streaming/stateful/output")running_counts.pprint()ssc.start()ssc.awaitTermination()
新建一个终端(记作“数据源终端”),执行如下命令运行nc 程序:
cd /root/Desktop/luozhongye/streaming/socket/
nc -lk 9999
新建一个 Linux 终端(记作“流计算终端”),执行如下命令提交运行程序:
cd /root/Desktop/luozhongye/streaming/stateful
/usr/local/spark/bin/spark-submit NetworkWordCountStatefulText.py localhost 9999
实验心得
通过本次实验,我深入理解了Spark Streaming,包括创建StreamingContext、DStream等对象。同时,我了解了Spark Streaming对不同类型数据流的处理方式,如文件流、套接字流和RDD队列流。此外,我还熟悉了Spark Streaming的转换操作和输出编程操作,并掌握了map、flatMap、filter等方法。最后,我能够自定义输出方式和格式。总之,这次实验让我全面了解了Spark Streaming,对未来的学习和工作有很大的帮助。