机器学习基本概念2

资料来源:

https://www.youtube.com/watch?v=Ye018rCVvOo&list=PLJV_el3uVTsMhtt7_Y6sgTHGHp1Vb2P2J&index=1

https://www.youtube.com/watch?v=bHcJCp2Fyxs&list=PLJV_el3uVTsMhtt7_Y6sgTHGHp1Vb2P2J&index=2

分三步

1、 定义function

0

b和w是需要透过知识去获取的,是未知的

做机器学习,需要Domain Knowledge,这些知识就是用来解b和w

0

这里的函式,就叫做Model

我们知道2月25号的人数是多少,就叫feauture

2、 定义Loss

Loss is a function of parameters

0

真实的值叫Label(正确的数值)

0

可以算出来最近3年的误差,把所有的误差加起来,算出来一个L,这就是我们的Loss,值越大,说明越不好

0

MAE和MSE的区别和选择具体而定,还有Cross-entropy

0

真实的后台统计数据例子

0

越偏红色,代表Loss越大,偏蓝色,Loss越小,那在预测的时候,w为0.75 b代500,可能预测会更准

3、最佳化算法

做法: Gradient Descent

如何做: 当w不同的值时,会得到不同的Loss,

怎么找到w,让Loss最小,随机选取初始化的点 w0(有一些方法可以更科学的找到这个值)

计算w对l的微积分,计算error surface的斜率,如果这个斜率的值为负数,

把w的值变大,Loss就会小

0

跨步要多大呢?

斜率大,就跨大

0

0

学习速率是自己设定的

Loss的值为什么会是负数?

因为这个函数是自己定义的,Loss的定义的估算的值和实际的值的绝对值,如果根据刚刚的定义,不可能为负数

但上面的这个例子不是真实的案例,error surface 可能是任何形状

hyperparameter,自己设定的

什么时候会停止下来?一般两种情况

a、 前期设定了这个参数,例如次数

b、 达到了理想的状态

Gradient Descent上面找不到最佳的loss值,因为随机的位置不一样

0

Local minima是个假的问题,具体为什么,后面会讲

两个参数,如何做上面的Graddient Descent?

0

例子

0

0

课程总结:

这三个步骤合并起来,叫做训练

0

0

2021年的误差还是比较大的,怎么做的更好? 分析下数据

0

蓝色线相当于把红色右移了一天而已,每隔7天就是一个循环

这个model是一个比较坏的,我们可以拿7天的周期来进行修改

0

x叫做feature

上面的叫做Linear Model,我们后面看下怎么把Linear Model做的更好

Linear Model 太过简单了

0

我们需要写出更复杂,更多未知参数的function

0

1除以1+Exponential-b+wx1,再乘以constant常数

当b+wx1趋向于无穷大的时候,会发生什么事呢,Exponential会消失,当X1非常大的时候,这一条线会收敛在高度是C的地方

当b+wx1趋向于负的无穷大,分母会非常大,Y的值会趋近于0

0

S型的function,叫做sigmoid

0

我们需要各式各样合适蓝色的function,那这个蓝色function怎么出来呢,需要调整b和w

改w,会改变斜率,斜坡的坡度

修改b呢,会左右移动

修改c,会改变高度

0

可以制造出不同

0

把0和1和2和3都加起来

0

summation,b是constant

假设b,c,w是未知参数,有弹性,有未知参数的函式

0

0

0

0

Transpose

0

X输入,我们的Feature是X这个向量,X乘上矩阵W加上向量b,得到向量r,再把向量r,通过Sigmooid Function得到向量a,

再把向量a跟乘上c的Transpose加上b,就得到了y

0

不同的表示方式,上面是图示化的方式,下面是线性代数的表示方式

0

0

在参数小的情况下,穷举所有的可能就行,不需要使用Gradient Descent

Sigmoid 可以有多个,会产生越多线段的 Piecewise Linear的function,你就可以逼近越复杂的function

至于需要几个Sigmoid,这是另外的Hyper Parameter,这个自己决定

Loss function

0

0

0

0

0

Update和Epoch是不一样的东西

每次更新一次参数叫做一次update,把所有的Batch都看过一遍,叫做一个Epoch

为什么要分成一个一个的batch?

0

0

0

0

0

激活函数

哪种比较好?? Relu好一些

0

我们还可以继续改我们的模型

0

我们可以把重复的事情,反复的再多做几次,这里的几次,又是另外一个超参数

0

模型也需要一个好的名字

0

这个是在模拟人脑

0

Deep Learning的由来。。。。

0

0

只要有足够多的ReLU或者Sigmoid,就能够逼近任何连续的Function

反复用的意义在哪里?

0

过多的层数效果不一定好

0

神经网络结构那部分讲的太精彩了。从简单的线性回归开始,到用几个简单线性函数去逼近一个分段线性函数,然后提出用sigmooid和线性逼近曲线,然后自然而然引出神经网络的基本结构。输入特征,参数,激活函数..等等概念自然而然都出来了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/213003.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux之autoconf(1)基础介绍

Linux之autoconf(1)基础介绍 Author:Onceday Date:2023年2023年12月10日 漫漫长路,才刚刚开始… 本文主要内容翻译自Autoconf官方文档,仅供学习交流之用。 全系列文章请查看专栏: buildroot编译框架_Once_day的博客-CSDN博客。…

FL Studio21最新FL水果编曲软件中文版在哪下载?

FL Studio21水果编曲软件是一款专业的音乐制作软件,被广泛地应用于电子音乐、hip-hop、流行乐等多种音乐类型的制作。该软件提供了丰富的音频编曲工具和音乐效果器,让用户可以轻松地创作出高品质的音乐作品。同时,这也是一款非常易于上手的软…

[ 云计算 | Azure 实践 ] 在 Azure 门户中创建 VM 虚拟机并进行验证

文章目录 一、前言二、在 Azure Portal 中创建 VM三、验证已创建的虚拟机资源3.1 方法一:在虚拟机服务中查看验证3.1 方法二:在资源组服务中查看验证 四、文末总结 一、前言 本文会开始创建新系列的专栏,专门更新 Azure 云实践相关的文章。 …

YOLOv8改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv8版(全网独家创新)

一、本文介绍 本文给大家带来的改进机制是利用今年新推出的AFPN(渐近特征金字塔网络)来优化检测头,AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于…

软件无线电SDR-频谱采集python实现

sdr做的频谱采集,保存的500张频谱图,能看出来是什么东西吗?

VC++使用GetProcessTimes获取进程创建时间、销毁时间、用户态时间、内核态时间

一、GetProcessTimes函数简介(微软MSDN) 微软提供了一个非常有用的API函数GetProcessTimes用来获取进程创建时间、销毁时间、用户态时间、内核态时间,msdn连接为:GetProcessTimes 函数 (processthreadsapi.h) 其函数原型为&#…

基于NIQE算法的图像无参考质量评价算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 空域NSS特征提取 4.2 图像块选取 4.3 MVG模型 4.4 NIQE指标 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 clc; clear; close all; …

轻量封装WebGPU渲染系统示例<46>- 材质组装管线(MaterialPipeline)灯光、阴影、雾以及多Pass(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/MaterialPipelineMultiPasses.ts 当前示例运行效果: 此示例基于此渲染系统实现,当前示例TypeScript源码如下: export class MaterialPipelin…

java实现网络聊天

网络聊天实现步骤(从功能谈论方法): 客户端: 1.登录面板:注册提醒用户注册格式,登录账号密码不为空,点击登录的时候需要连接服务器端,启动聊天面板。(监听用户点击登录…

Windows下nginx的启动,重启,关闭等功能bat脚本

echo off rem 提供Windows下nginx的启动,重启,关闭功能echo begincls ::ngxin 所在的盘符 set NGINX_PATHG:::nginx 所在目录 set NGINX_DIRG:\projects\nginx-1.24.0\ color 0a TITLE Nginx 管理程序增强版CLSecho. echo. ** Nginx 管理程序 *** echo.…

JAVA使用HTTP代码示例

你好,Java开发者们!今天,我要给你们带来一场硬核的盛宴,那就是在Java中使用HTTP协议进行网络通信的代码示例。准备好接受挑战了吗?Lets go! 首先,我们需要导入一些必要的库,它们将成…

C++枚举类

枚举 C11有作用域枚举和无作用域枚举 无作用域枚举 特点 全局作用域:无作用域枚举的成员(枚举值)在包含它们的作用域内是直接可见的,不需要使用枚举类型名称作为前缀。 隐式类型转换:无作用域枚举的成员可以隐式地转换…

鸿蒙开发组件之ForEach列表

一、ForEach函数 ForEach函数是一个迭代函数,需要传递两个必须参数和一个可选参数。主要通过迭代来获取参数arr中的数据不断的生成单个Item来生成鸿蒙中的列表样式 二、先创建单个的Item的UI 通过嵌套Row与Column来实现单个Item的UI。例如图中没有折扣的可以看成一…

用23种设计模式打造一个cocos creator的游戏框架----(八)适配器模式

1、模式标准 模式名称:适配器模式 模式分类:结构型 模式意图:适配器模式的意图是将一个类的接口转换成客户端期望的另一个接口。适配器模式使原本接口不兼容的类可以一起工作。 结构图: 适用于: 系统需要使用现有的…

309. 买卖股票的最佳时机含冷冻期(leetcode) 动态规划思想

文章目录 前言一、题目分析二、算法原理1.状态表示2.状态转移方程3.初始化边界条件4.填表顺序5.返回值是什么 三、代码实现总结 前言 在本文章中,我们将要详细介绍一下Leetcode中买卖股票的最佳时机含冷冻期相关的内容,本题采用动态规划的思想解决 一、…

PyQt6 QDateEdit日期控件

​锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计39条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话…

空中消防员:无人机森林防火应用全面升级

森林是生态系统的重要组成部分,也是人类得以生存的关键。我国森林面积广大,存在火灾频发的困境。提升森林火灾防控能力是维护生态平衡、保护资源和保障人民生命安全的必要步骤。随着无人机技术的发展,其在无人机森林防火中的应用为传统巡查工…

Mybatis与Spring结合深探——MapperFactoryBean的奥秘

文章目录 前言MapperFactoryBean的工作原理底层实现剖析MapperFactoryBean的checkDaoConfig()方法总结 MapperFactoryBean的getObject()方法 思考联想后续 系列相关相关文章究竟FactoryBean是什么?深入理解Spring的工厂神器超硬核解析Mybatis动态代理原理&#xff0…

lv12 开发板启动过程

1 开发板启动过程 1.1 回顾芯片手册第三章内存映射 对于arm来说,不是给它多大的内存都能读。寻址空间(地址空间)读写范围是有限的,寻址空间的大小与地址总线宽度有关,如32位,地址空间4G(2^32)…

【C语言基础】嵌入式面试经典题(C语言篇)----有新的内容会及时补充、更新!

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…