【数据结构高阶】红黑树

目录

一、红黑树的概念

二、红黑树的性质

2.1 红黑树与AVL树的比较

三、红黑树的实现

3.1 红黑树节点的定义

3.2 数据的插入

3.2.1 红黑树的调整思路

3.2.1.1 cur为红,f为红,g为黑,u存在且为红

3.2.1.2 cur为红,f为红,g为黑,u不存在/u存在且为黑

3.2.1.2.1 g、f、cur构成一条直线

3.2.1.2.2 g、f、cur构成一条折线

3.2.2 调整部分的代码实现

3.3 红黑树的验证

3.4 测试代码

四、红黑树实现完整代码


一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。

二、红黑树的性质

● 每个结点不是红色就是黑色

● 根节点是黑色的

● 如果一个节点是红色的,则它的两个孩子结点是黑色的(不允许出现连续的红色节点)

● 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(从根节点到每个叶子节点的空孩子路径上有相同数目的黑色节点)

● 每个叶子结点的空孩子节点都是黑色的

根据上述的五条性质,我们可以发现一个红黑树中如果有N个黑色节点,则根节点到任意一个叶子节点的距离:最短为㏒⑵N,最长为2㏒⑵N

2.1 红黑树与AVL树的比较

我们来看到下面的红黑树:

对于这棵红黑树,如果将其看成一个AVL树,是需要进行旋转的,但是在红黑树结构中却不需要

所以红黑树是近似平衡的,在搜索效率上会略逊AVL树一些,但是红黑树在结构上不要求绝对的平衡,这就造成插入相同的数据红黑树翻转的次数少于AVL树

实际使用中,在经常进行增删的场景下红黑树性能比AVL树更优,并且红黑树实现比较简单,所以实际运用中红黑树更多

三、红黑树的实现

3.1 红黑树节点的定义

enum Colour
{RED,BLACK
};template<class Key, class Val>
struct RBTreeNode
{RBTreeNode<Key, Val>* _left;RBTreeNode<Key, Val>* _right;RBTreeNode<Key, Val>* _parent;//多一个指针指向其父节点,方便我们的后续操作pair<Key, Val> _kv;Colour _col;//颜色标识RBTreeNode(const pair<Key, Val>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED)//构造时,优先将节点的颜色置为红色{}
};

在这里提一下为什么要默认将节点的颜色置为红色:

在我们向红黑树中插入一个新节点时,如果将该节点置为黑色,就肯定会影响红黑树性质中的第四条:对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点

例如:

我们现在在上面这棵树中,不管在哪个叶子节点的下方插入一个黑色的新增节点,从根节点到插入的节点的空孩子的路径上的黑色节点数目会变为4,而从根节点到其他叶子节点的空孩子的路径上的黑色节点数目会都为3

所以我们将新增节点的颜色置为红色就一定不会违反第四条红黑树性质,但是第三条呢?如果插入节点的父节点是红色的怎么办?

怎么办我们后面再说,反正总归比置为黑色一定会违反第四条性质好吧

3.2 数据的插入

由于红黑树也是平衡二叉搜索树的一种,我们在插入数据时也要找到合适的位置进行插入:

template<class Key, class Val>
class RBTree
{typedef RBTreeNode<Key, Val> Node;
public:bool Insert(const pair<Key,Val>& kv){Node* cur = _root, * parent = nullptr;while (cur)//找到合适的位置{if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{cout << "插入的值重复" << endl;return false;}}cur = new Node(kv);cur->_parent = parent;//将插入的节点连接上二叉树if (parent == nullptr){_root = cur;}else if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}return true;}private:Node* _root = nullptr;
};

插入到合适的位置之后,我们还要检查是否破坏了红黑树的结构(由于我们插入的是红色节点,所以只会出现两个红色节点连续的情况),如果出现了该情况,我们就要对其进行分类讨论并解决:

3.2.1 红黑树的调整思路

下面我们将出现异常情况的两个节点的那个子节点叫做cur,cur的父节点叫做father(简称f),father的父节点叫做grandfather(简称g),father的兄弟节点叫做uncle(简称u)

例如:

接下来,我们分类讨论:

3.2.1.1 cur为红,f为红,g为黑,u存在且为红

下面画出的情况表示的是抽象出的情况:A、B、C、D、E都是满足构成红黑树的子树

对于这种情况我们先将f和u节点变黑,再将g节点变红即可:

调整完后,要记得再向上检查g节点的父节点是否为红色哦~(如果g节点为整棵红黑树的根,最后要将其颜色置为黑)

3.2.1.2 cur为红,f为红,g为黑,u不存在/u存在且为黑
3.2.1.2.1 g、f、cur构成一条直线

对于这种情况:若f为g的左孩子,cur为f的左孩子,则进行右单旋:

再将f变黑,g变红:

相反, f为g的右孩子,cur为f的右孩子,则进行左单旋转:

再将f变黑,g变红:

3.2.1.2.2 g、f、cur构成一条折线

f为g的左孩子,cur为f的右孩子,则做左右双旋,旋转完后将cur节点颜色置黑、g节点颜色置红:

相反, f为g的右孩子,cur为f的左孩子,则做右左双旋,旋转完后将cur节点颜色置黑、g节点颜色置红:

对于旋转操作还不熟悉的同学可以看到这里:【数据结构高阶】AVL树

3.2.2 调整部分的代码实现

template<class Key, class Val>
class RBTree
{typedef RBTreeNode<Key, Val> Node;
public:bool Insert(const pair<Key, Val>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root, * parent = nullptr;while (cur)//找到合适的位置{if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{cout << "插入的值重复" << endl;return false;}}cur = new Node(kv);//将插入的节点连接上二叉树if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//开始调整while (parent && parent->_col == RED)//红黑树的结构出现两个连续的红色节点{Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED)//cur为红,p为红,g为黑,u存在且为红{parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续向上更新cur = grandfather;parent = cur->_parent;}elsecur为红,p为红,g为黑,u不存在/u存在且为黑{if (cur == parent->_left)//cur在p的左边,p也在g的左边,构成一条直线{//右单旋RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else//cur在p的右边,p在g的左边,构成一条折线{//左右双旋RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//调整完跳出}}else{Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED)//cur为红,p为红,g为黑,u存在且为红{parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续向上更新cur = grandfather;parent = cur->_parent;}elsecur为红,p为红,g为黑,u不存在/u存在且为黑{if (cur == parent->_right)//cur在p的右边,p也在g的右边,构成一条直线{//左单旋RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else//cur在p的左边,p在g的右边,构成一条折线{//右左双旋RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//调整完跳出}}}_root->_col = BLACK;//确保即便进行过调整后根节点颜色为黑return true;
}private:void RotateL(Node* parent)//左单旋{Node* subR = parent->_right;Node* subRL = subR->_left;Node* pparent = parent->_parent;parent->_right = subRL;//更新parent的右节点if (subRL)//防止该节点为空{subRL->_parent = parent;//更新subRL的父节点}parent->_parent = subR;//更新parent的父节点subR->_left = parent;//subR的左子树置为parentsubR->_parent = pparent;//更新subR的父节点if (pparent == nullptr)//旋转的是整棵树{_root = subR;//更新根节点}else//将旋转后的子树链接上整个二叉树{if (pparent->_left == parent){pparent->_left = subR;}else{pparent->_right = subR;}}}void RotateR(Node* parent)//右单旋{Node* subL = parent->_left;Node* subLR = subL->_right;Node* pparent = parent->_parent;parent->_left = subLR;//更新parent的左节点if (subLR)//防止该节点为空{subLR->_parent = parent;//更新subLR的父节点}parent->_parent = subL;//更新parent的父节点subL->_right = parent;//subL的右子树置为parentsubL->_parent = pparent;//更新subL的父节点if (pparent == nullptr)//旋转的是整棵树{_root = subL;//更新根节点}else//将旋转后的子树链接上整个二叉树{if (pparent->_left == parent){pparent->_left = subL;}else{pparent->_right = subL;}}}private:Node* _root = nullptr;
};

3.3 红黑树的验证

下面我们来写段代码来验证一课树是不是红黑树:

template<class Key, class Val>
class RBTree
{typedef RBTreeNode<Key, Val> Node;
public:bool IsBalance(){if (_root && _root->_col == RED){cout << "根节点颜色是红色" << endl;return false;}int benchmark = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)++benchmark;cur = cur->_left;}// 连续红色节点return _Check(_root, 0, benchmark);}private:bool _Check(Node* root, int blackNum, int benchmark)//计算每条路径上黑色节点的个数{if (root == nullptr){if (benchmark != blackNum){cout << "某条路径黑色节点的数量不相等" << endl;return false;}return true;}if (root->_col == BLACK){++blackNum;}if (root->_col == RED&& root->_parent&& root->_parent->_col == RED){cout << "存在连续的红色节点" << endl;return false;}return _Check(root->_left, blackNum, benchmark)&& _Check(root->_right, blackNum, benchmark);}private:Node* _root = nullptr;
};

3.4 测试代码

void Test_RBTree()
{const size_t N = 50000;RBTree<int, int> t;for (size_t i = 0; i < N; ++i){size_t x = rand() + i;t.Insert(make_pair(x, x));}t.InOrder();cout << t.IsBalance();
}int main()
{Test_RBTree();return 0;
}

测试效果:

四、红黑树实现完整代码

#include<iostream>using namespace std;enum Colour
{RED,BLACK
};template<class Key, class Val>
struct RBTreeNode
{RBTreeNode<Key, Val>* _left;RBTreeNode<Key, Val>* _right;RBTreeNode<Key, Val>* _parent;//多一个指针指向其父节点,方便我们的后续操作pair<Key, Val> _kv;Colour _col;//颜色标识RBTreeNode(const pair<Key, Val>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED)//默认构造时,优先将节点的颜色置为红色{}
};template<class Key, class Val>
class RBTree
{typedef RBTreeNode<Key, Val> Node;
public:bool Insert(const pair<Key, Val>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root, * parent = nullptr;while (cur)//找到合适的位置{if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{cout << "插入的值重复" << endl;return false;}}cur = new Node(kv);//将插入的节点连接上二叉树if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//开始调整while (parent && parent->_col == RED)//红黑树的结构出现两个连续的红色节点{Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED)//cur为红,p为红,g为黑,u存在且为红{parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续向上更新cur = grandfather;parent = cur->_parent;}elsecur为红,p为红,g为黑,u不存在/u存在且为黑{if (cur == parent->_left)//cur在p的左边,p也在g的左边,构成一条直线{//右单旋RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else//cur在p的右边,p在g的左边,构成一条折线{//左右双旋RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//调整完跳出}}else{Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED)//cur为红,p为红,g为黑,u存在且为红{parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续向上更新cur = grandfather;parent = cur->_parent;}elsecur为红,p为红,g为黑,u不存在/u存在且为黑{if (cur == parent->_right)//cur在p的右边,p也在g的右边,构成一条直线{//左单旋RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else//cur在p的左边,p在g的右边,构成一条折线{//右左双旋RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//调整完跳出}}}_root->_col = BLACK;//确保即便进行过调整后根节点颜色为黑return true;
}void InOrder()//中序遍历{_InOrder(_root);cout << endl;}bool IsBalance(){if (_root && _root->_col == RED){cout << "根节点颜色是红色" << endl;return false;}int benchmark = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)++benchmark;cur = cur->_left;}// 连续红色节点return _Check(_root, 0, benchmark);}private:void RotateL(Node* parent)//左单旋{Node* subR = parent->_right;Node* subRL = subR->_left;Node* pparent = parent->_parent;parent->_right = subRL;//更新parent的右节点if (subRL)//防止该节点为空{subRL->_parent = parent;//更新subRL的父节点}parent->_parent = subR;//更新parent的父节点subR->_left = parent;//subR的左子树置为parentsubR->_parent = pparent;//更新subR的父节点if (pparent == nullptr)//旋转的是整棵树{_root = subR;//更新根节点}else//将旋转后的子树链接上整个二叉树{if (pparent->_left == parent){pparent->_left = subR;}else{pparent->_right = subR;}}}void RotateR(Node* parent)//右单旋{Node* subL = parent->_left;Node* subLR = subL->_right;Node* pparent = parent->_parent;parent->_left = subLR;//更新parent的左节点if (subLR)//防止该节点为空{subLR->_parent = parent;//更新subLR的父节点}parent->_parent = subL;//更新parent的父节点subL->_right = parent;//subL的右子树置为parentsubL->_parent = pparent;//更新subL的父节点if (pparent == nullptr)//旋转的是整棵树{_root = subL;//更新根节点}else//将旋转后的子树链接上整个二叉树{if (pparent->_left == parent){pparent->_left = subL;}else{pparent->_right = subL;}}}void _InOrder(Node* root){if (root == NULL)//如果是空树就直接结束{return;}_InOrder(root->_left);//先递归遍历其左子树cout << root->_kv.first << " ";//再遍历其根节点_InOrder(root->_right);//最后递归遍历其右子树}bool _Check(Node* root, int blackNum, int benchmark){if (root == nullptr){if (benchmark != blackNum){cout << "某条路径黑色节点的数量不相等" << endl;return false;}return true;}if (root->_col == BLACK){++blackNum;}if (root->_col == RED&& root->_parent&& root->_parent->_col == RED){cout << "存在连续的红色节点" << endl;return false;}return _Check(root->_left, blackNum, benchmark)&& _Check(root->_right, blackNum, benchmark);}private:Node* _root = nullptr;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/212951.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IT新闻资讯系统,使用mysql作为后台数据库,此系统具有显示数据库中的所有信息和删除两大功能。

表的准备&#xff1a; -- MySQL Administrator dump 1.4 -- -- ------------------------------------------------------ -- Server version 5.1.40-community /*!40101 SET OLD_CHARACTER_SET_CLIENTCHARACTER_SET_CLIENT */; /*!40101 SET OLD_CHARACTER_SET_RESULTSCHAR…

55.手写实现grpc连接池以及gin和grpc交互

文章目录 一、简介前置说明 二、敏感词过滤服务1、定义sensitive.proto文件2、protoc生成pb.go文件3、sensitive服务端实现 三、关键词匹配服务1、编写keywords.proto文件2、生成pb.go文件3、keywords服务端实现 四、gin web 路由服务1、新建grpcpool服务作为gin web服务2、根据…

GEE影像升尺度(10m->250m)

GEE影像升尺度&#xff08;10m->250m&#xff09; 代码 var ext /* color: #d63000 *//* shown: false *//* displayProperties: [{"type": "rectangle"}] */ee.Geometry.Polygon([[[108.74625980473367, 28.562445155322063],[108.74625980473367, …

Day56力扣打卡

打卡记录 数对统计&#xff08;DP状态压缩&#xff09; 参考文献 #include <bits/stdc.h>using namespace std;void solve(){int n;cin >> n;map<int, int> mapp;vector<int> a(n);for (auto& x : a){cin >> x;mapp[x] ;}vector<array&…

使用WebyogSQLyog使用数据库

数据库 实现数据持久化到本地&#xff1a; 使用完整的管理系统统一管理&#xff0c; 数据库&#xff08;DateBase&#xff09;&#xff1a; 为了方便数据存储和管理&#xff08;增删改查&#xff09;&#xff0c;将数据按照特定的规则存储起来 安装WebyogSQLyog -- 创建数…

101基于matlab的极限学习机ELM算法进行遥感图像分类

基于matlab的极限学习机ELM算法进行遥感图像分类&#xff0c;对所获取的遥感图片进行初步分类和最终分类。数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。

如何使用 Explain 分析 SQL 语句?

如何使用 Explain 分析 SQL 语句&#xff1f; MySQL中EXPLAIN命令是我们分析和优化SQL语句的利器。 如何使用EXPLAIN来分析SQL语句&#xff0c;接下来有15个例子&#xff0c;一起学习呗 1. EXPLAIN的基本使用 EXPLAIN可以用于分析MySQL如何执行一个SQL查询&#xff0c;包括如…

python+gdal地理坐标转投影坐标

1 前言 地理坐标系&#xff0c;是使用三维球面来定义地球表面位置&#xff0c;以实现通过经纬度对地球表面点位引用的坐标系。 地理坐标系经过地图投影操作后就变成了投影坐标系。而地图投影是按照一定的数学法则将地球椭球面上点的经维度坐标转换到平面上的直角坐标。 2 流程…

基于STM32的四位数码管计数器设计与实现

✅作者简介&#xff1a;热爱科研的嵌入式开发者&#xff0c;修心和技术同步精进&#xff0c; 代码获取、问题探讨及文章转载可私信。 ☁ 愿你的生命中有够多的云翳,来造就一个美丽的黄昏。 &#x1f34e;获取更多嵌入式资料可点击链接进群领取&#xff0c;谢谢支持&#xff01;…

Docker Compose(容器编排)——9

目录 什么是 Docker Compose生活案例为什么要 Docker ComposeDocker Compose 的安装Docker Compose 的功能Docker Compose 使用场景Docker Compose 文件&#xff08;docker-compose.yml&#xff09; 文件语法版本文件基本结构及常见指令Docker Compose 命令清单 命令清单如下命…

C++11(下)

可变参数模板 C11的新特性可变参数模板能够创建可以接受可变参数的函数模板和类模板. 相比C98/03, 类模版和函数模版中只能含固定数量的模版参数, 可变模版参数无疑是一个巨大的改进, 然而由于可变模版参数比较抽象, 使用起来需要一定的技巧, 所以这块还是比较晦涩的.掌握一些基…

Vue 3项目的运行过程

概述&#xff1a; 使用Vite构建Vue 3项目后&#xff0c;当执行yarn dev命令启动服务时&#xff0c;项目就会运行起来&#xff0c;该项目会通过src\main.js文件将src\App.vue组件渲染到index.html文件的指定区域。 文件介绍&#xff1a; src\App.vue文件 Vue 3项目是由各种组件…

Spring Boot的日志

打印日志 打印日志的步骤: • 在程序中得到日志对象. • 使用日志对象输出要打印的内容 在程序中得到日志对象 在程序中获取日志对象需要使用日志工厂LoggerFactory,代码如下: package com.example.demo;import org.slf4j.Logger; import org.slf4j.LoggerFactory;public c…

STM32——继电器

继电器工作原理 单片机供电 VCC GND 接单片机&#xff0c; VCC 需要接 3.3V &#xff0c; 5V 不行&#xff01; 最大负载电路交流 250V/10A &#xff0c;直流 30V/10A 引脚 IN 接收到 低电平 时&#xff0c;开关闭合。

从Centos-7升级到Centos-Stream-8

如果在正式环境升级&#xff0c;请做好数据备份以及重要配置备份&#xff01;因为升级会造一部分应用被卸载。 注意&#xff1a;升级前请备份好数据&#xff0c;升级可能会导致ssh的root用户无法登陆、网卡名称发生改变、引导丢失无法开机等问题。 1.安装epel源 yum -y install…

【Spring教程20】Spring框架实战:AOP(面对切面编程)知识总结

欢迎大家回到《Java教程之Spring30天快速入门》&#xff0c;本教程所有示例均基于Maven实现&#xff0c;如果您对Maven还很陌生&#xff0c;请移步本人的博文《如何在windows11下安装Maven并配置以及 IDEA配置Maven环境》&#xff0c;本文的上一篇为《利用 AOP通知获取数据代码…

软件测试(接口测试业务场景测试)

软件测试 手动测试 测试用例8大要素 编号用例名称&#xff08;标题&#xff09;模块优先级预制条件测试数据操作步骤预期结果 接口测试&#xff08;模拟http请求&#xff09; 接口用例设计 防止漏测方便分配工具&#xff0c;评估工作量和时间接口测试测试点 功能 单接口业…

利用Microsoft Visual Studio Installer Projects打包安装包

利用Microsoft Visual Studio Installer Projects打包安装包 具体步骤步骤1&#xff1a;安装扩展步骤2&#xff1a;创建 Setup 项目步骤3&#xff1a;设置属性步骤4&#xff1a;添加输出步骤5&#xff1a;添加文件步骤6&#xff1a;添加桌面快捷方式步骤7&#xff1a;添加菜单快…

【Table/SQL Api】Flink Table/SQL Api表转流读取MySQL

引入依赖 jdbc依赖 flink-connector-jdbc mysql-jdbc-driver 操作mysql数据库 <!-- Flink-Connector-Jdbc --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>…

Ubuntu上安装 Git

在 Ubuntu 上安装 Git 可以通过包管理器 apt 进行。以下是在 Ubuntu 上安装 Git 的步骤&#xff1a; 打开终端。你可以按 Ctrl Alt T 组合键来打开终端。 运行以下命令以确保你的系统的软件包列表是最新的&#xff1a; sudo apt update 安装 Git&#xff1a; sudo apt inst…