Python轴承故障诊断 (四)基于EMD-CNN的故障分类

目录

前言

1 经验模态分解EMD的Python示例

2 轴承故障数据的预处理

2.1 导入数据

2.2 制作数据集和对应标签

2.3 故障数据的EMD分解可视化

2.4 故障数据的EMD分解预处理

3 基于EMD-CNN的轴承故障诊断分类

3.1 训练数据、测试数据分组,数据分batch

3.2 定义EMD-VGG1d网络模型

3.3 设置参数,训练模型

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT

Python轴承故障诊断 (三)经验模态分解EMD

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行经验模态分解EMD的介绍与数据预处理,最后通过Python实现EMD-CNN对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

经验模态分解EMD的原理可以参考如下:   

Python轴承故障诊断 (三)经验模态分解EMD

1 经验模态分解EMD的Python示例

第一步,Python 中 EMD包的下载安装:

# 下载
pip install EMD-signal# 导入
from PyEMD import EMD

切记,很多同学安装失败,不是 pip install EMD,也不是pip install PyEMD, 如果 pip list 中 已经有 emd,emd-signal,pyemd包的存在,要先 pip uninstall 移除相关包,然后再进行安装。

第二步,导入相关包

importnumpyasnp
from PyEMD import EMD
importmatplotlib.pyplotasplt
importmatplotlib
matplotlib.rc("font", family='Microsoft YaHei')

第三步,生成一个信号示例

t = np.linspace(0, 1, 1000)
signal = np.sin(11*2*np.pi*t*t) + 6*t*t

第四步,创建EMD对象,进行分解

emd = EMD()# 对信号进行经验模态分解IMFs = emd(signal)

第五步,绘制原始信号和每个本征模态函数(IMF)

plt.figure(figsize=(15,10))plt.subplot(len(IMFs)+1, 1, 1)plt.plot(t, signal, 'r')plt.title("原始信号")for num, imf in enumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(t, imf)plt.title("IMF "+str(num+1))plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 制作数据集和对应标签

第一步, 生成数据集

第二步,制作数据集和标签

# 制作数据集和标签
import torch# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。def make_data_labels(dataframe):'''参数 dataframe: 数据框返回 x_data: 数据集     torch.tensory_label: 对应标签值  torch.tensor'''# 信号值x_data = dataframe.iloc[:,0:-1]# 标签值y_label = dataframe.iloc[:,-1]x_data = torch.tensor(x_data.values).float()y_label = torch.tensor(y_label.values, dtype=torch.int64)  # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签return x_data, y_label# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

2.3 故障数据的EMD分解可视化

选择正常信号和 0.021英寸内圈、滚珠、外圈故障信号数据来做对比

第一步,导入包,读取数据

import numpy as np
from scipy.io import loadmat
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')# 读取MAT文件  
data1 = loadmat('0_0.mat')  # 正常信号
data2 = loadmat('21_1.mat') # 0.021英寸 内圈
data3 = loadmat('21_2.mat') # 0.021英寸 滚珠
data4 = loadmat('21_3.mat') # 0.021英寸 外圈
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中统一读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验

# DE - drive end accelerometer data 驱动端加速度数据
data_list1 = data1['X097_DE_time'].reshape(-1)
data_list2 = data2['X209_DE_time'].reshape(-1)  
data_list3 = data3['X222_DE_time'].reshape(-1)
data_list4 = data4['X234_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
time_step= 1024
data_list1 = data_list1[0:time_step]
data_list2 = data_list2[0:time_step]
data_list3 = data_list3[0:time_step]
data_list4 = data_list4[0:time_step]

第三步,进行数据可视化

plt.figure(figsize=(20,10))
plt.subplot(2,2,1)
plt.plot(data_list1)
plt.title('正常')
plt.subplot(2,2,2)
plt.plot(data_list2)
plt.title('内圈')
plt.subplot(2,2,3)
plt.plot(data_list3)
plt.title('滚珠')
plt.subplot(2,2,4)
plt.plot(data_list4)
plt.title('外圈')
plt.show()

第四步,首先对正常数据进行EMD分解

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMDt = np.linspace(0, 1, time_step)
data = np.array(data_list1)
# 创建 EMD 对象
emd = EMD()# 对信号进行经验模态分解
IMFs = emd(data)# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, data, 'r')
plt.title("Original signal", fontsize=10)for num, imf in enumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(t, imf)plt.title("IMF "+str(num+1), fontsize=10)# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.4, wspace=0.2)
plt.show()

其次,内圈故障EMD分解:

然后,滚珠故障EMD分解:

最后,外圈故障EMD分解:

注意,在信号的制作过程中,信号长度的选取比较重要,选择信号长度为1024,既能满足信号在时间维度上的分辨率,也能在后续的EMD分解中分解出数量相近的IMF分量,为进一步做故障模式识别打下基础。

2.4 故障数据的EMD分解预处理

对于EMD分解出的IMF分量个数,并不是所有的样本信号都能分解出8个分量,需要做一下定量分析:

import numpy as np
from PyEMD import EMD# 加载训练集
train_xdata = load('trainX_1024_10c')
data = np.array(train_xdata)# 创建 EMD 对象
emd = EMD()print("测试集:", len(data))
count_min = 0
count_max = 0
count_7 = 0
# 对数据进行EMD分解
for i in range(1631):imfs = emd(data[i], max_imf=8)  # max_imf=8if len(imfs) > 8 :count_max += 1elif len(imfs) < 7:count_min += 1elif len(imfs) == 7:count_7 += 1print("分解结果IMF大于8:", count_max)
print("分解结果IMF小于7:", count_min)
print("分解结果IMF等于7:", count_7)

由结果可以看出,大部分信号样本 都分解出8个分量,将近1/3的信号分解的不是8个分量。EMD设置不了分解出模态分量的数量(函数自适应),为了使一维信号分解,达到相同维度的分量特征,有如下3种处理方式:

  • 删除分解分量不统一的样本(少量存在情况可以采用);

  • 对于分量个数少的样本采用0值或者其他方法进行特征填充,使其对齐其他样本分量的维度(向多兼容);

  • 合并分量数量多的信号(向少兼容);

本文采用第二、三条结合的方式进行预处理,即删除分量小于7的样本,对于分量大于7的样本,把多余的分量进行合并,使所有信号的分量特征保持同样的维度。

3 基于EMD-CNN的轴承故障诊断分类

下面基于EMD分解后的轴承故障数据,通过CNN进行一维卷积作为的分类方法进行讲解:

3.1 训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载数据集
def dataloader(batch_size, workers=2):# 训练集train_xdata = load('trainX_1024_10c')train_ylabel = load('trainY_1024_10c')# 验证集val_xdata = load('valX_1024_10c')val_ylabel = load('valY_1024_10c')# 测试集test_xdata = load('testX_1024_10c')test_ylabel = load('testY_1024_10c')# 加载数据train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)return train_loader, val_loader, test_loaderbatch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-VGG1d网络模型

3.3 设置参数,训练模型

200个epoch,准确率将近96%,用浅层的VGG效果明显,继续调参可以进一步提高分类准确率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211737.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

D : DS查找——折半查找求平方根

Description 假定输入y是整数&#xff0c;我们用折半查找来找这个平方根。在从0到y之间必定有一个取值是y的平方根&#xff0c;如果我们查找的数x比y的平方根小&#xff0c;则x2<y&#xff0c;如果我们查找的数x比y的平方根大&#xff0c;则x2>y&#xff0c;我们可以据此…

stu05-前端的几种常用开发工具

前端的开发工具有很多&#xff0c;可以说有几十种&#xff0c;包括记事本都可以作为前端的开发工具。下面推荐的是常用的几种前端开发工具。 1.DCloud HBuilder&#xff08;轻量级&#xff09; HBuilder是DCloud&#xff08;数字天堂&#xff09;推出的一款支持HTML5的web开发…

硬件开发笔记(十四):RK3568底板电路LVDS模块、MIPI模块电路分析、LVDS硬件接口、MIPI硬件接口详解

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/134634186 红胖子网络科技博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

linux 关于$-的解释(帖子搜索合集)

在学习Linux的时候&#xff0c;今天遇到了$-&#xff0c;什么意思呢&#xff1f;网上搜索了一些帖子&#xff1a; 帖子1&#xff1a; linux命令 $- 是什么意思 $- 是什么意思&#xff1f;有什么用&#xff1f;可以判断什么交互式shell&#xff1f; $-记录着当前设置的shell…

软考高级备考-系统架构师(机考后新版教材的备考过程与资料分享)

软考高级-系统架构设计师 考试复盘1.考试结果2.备考计划3.个人心得 资料分享 考试复盘 1.考试结果 三科压线过&#xff0c;真是太太太太太太太幸运了。上天对我如此眷顾&#xff0c;那不得不分享下我的备考过程以及一些备考资料&#xff0c;帮助更多小伙伴通过考试。 2.备考…

time模块(python)

一.sleep休眠 [rootrhel8 day04]# vim demo01_time.py import time def banzhuan():print("搬砖")time.sleep(3.5) #让程序休眠3.5秒print("结束")banzhuan()[rootrhel8 day04]# python3 demo01_time.py 搬砖 结束运行时&#xff0c;会发现程序中间暂停…

【3DsMax】制作简单的骨骼动画

效果 步骤 首先准备4个板子模型展开放置好 添加一个4段的骨骼 选中其中的一块板子添加蒙皮命令 在蒙皮的参数面板中&#xff0c;设置每块板子对应哪块骨骼 设置好后你可以发现此时就已经可以通过骨骼来控制模型了 接下来就可以制作动画 点击左下角“时间配置”按钮 设置一下动…

HarmonyOS--ArkTS(1)--基本语法(1)

目录 基本语法概述 声明式UI描述 自定义组件 创建自定义组件 自定义组件的结构--struct &#xff0c;Component&#xff0c;build()函数 生命周期 基本语法概述 装饰器&#xff1a; 用于装饰类、结构、方法以及变量&#xff0c;并赋予其特殊的含义。如上述示例中Entry、C…

VSCode安装与使用

VS Code 安装及使用 1、下载 进入VS Code官网&#xff1a;地址&#xff0c;点击 DownLoad for Windows下载windows版本 注&#xff1a; Stable&#xff1a;稳定版Insiders&#xff1a;内测版 2、安装 双击安装包&#xff0c;选择我同意此协议&#xff0c;再点击下一步 选择你…

SQL Server查询计划(Query Plan)——SQL处理过程

6. 查询计划(Query Plan) 6.1. SQL处理过程 就SQL语句的处理过程而言,各关系库间大同小异,尤其是商业库之间实现机制和细节差别更小些,其功能及性能支持方面也更加强大和完善。SQL Server作为商业库中的后起之秀,作为SQL语句处理过程的主要支撑和保障,其优化器及相关机…

【Vulnhub 靶场】【hacksudo: ProximaCentauri】【简单 - 中等】【20210608】

1、环境介绍 靶场介绍&#xff1a;https://www.vulnhub.com/entry/hacksudo-proximacentauri,709/ 靶场下载&#xff1a;https://download.vulnhub.com/hacksudo/hacksudo-ProximaCentauri.zip 靶场难度&#xff1a;简单 - 中等 发布日期&#xff1a;2021年06月08日 文件大小&…

第9节:Vue3 指令

如何在UniApp中使用Vue3的指令&#xff1a; <template> <view> <!-- 使用指令 --> <text v-show"isVisible" click"toggleVisibility">点击隐藏/显示</text> <button v-on:click"incrementCount">点击…

【LeetCode:70. 爬楼梯 | 递归 -> 记忆化搜索 -> DP】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

【图片版】计算机组成原理考前复习题【第3章 存储系统-2(Cache)】

目录 前言 考前复习题&#xff08;必记&#xff09; 结尾 前言 在计算机组成原理的学习过程中&#xff0c;我们深入探索了计算机系统概述这一重要领域。计算机系统作为现代科技的核心&#xff0c;是整个计算机科学的基石。我们将学到的知识与理论转化为了能够解决现实问题…

web api性能测试使用wrk

web api性能测试 这边简单的给出shell脚本 注意先安装&#xff1a;wrk和gnuplot #!/bin/bash# Copyright 2020 Lingfei Kong <colin404foxmail.com>. All rights reserved. # Use of this source code is governed by a MIT style # license that can be found in the…

vue 学习 -- day39(vue3 — reactive 对比 ref)

从定义数据角度对比&#xff1a; ref用来定义&#xff1a;基本类型数据。reactive用来定义&#xff1a;对象&#xff08;或数组&#xff09;类型数据。备注&#xff1a;ref也可以用来定义对象&#xff08;或数组&#xff09;类型数据, 它内部会自动通过reactive转为代理对象。从…

如何防止恶意调用和攻击对抖音商品详情API的影响?

防止恶意调用和攻击对抖音商品详情API的影响是开发者和平台必须关注的问题。恶意调用和攻击可能导致服务中断、数据泄露或其他安全问题&#xff0c;对平台和用户造成损失。本文将介绍一些常见的恶意调用和攻击方式&#xff0c;并提出相应的防范措施&#xff0c;以确保抖音商品详…

JavaScript函数概念、声明、调用

JavaScript函数是一段可以重复使用的代码块&#xff0c;用于执行特定的任务。函数封装了一定的逻辑&#xff0c;可以接收输入参数并返回结果&#xff0c;使得代码更加模块化&#xff0c;可读性更高。 函数声明可以使用function关键字来创建&#xff0c;通常包括函数名、参数列…

python画动漫形象(魔法少女小圆晓美焰,super beautiful)

1.源代码 import turtle as te import time WriteStep 15 # 贝塞尔函数的取样次数 Speed 5 Width 600 # 界面宽度 Height 500 # 界面高度 Xh 0 # 记录前一个贝塞尔函数的手柄 Yh 0 def Bezier(p1, p2, t): # 一阶贝塞尔函数 return p1 * (1 - t) p2 * t def Bezier_2(x1…

stu06-VSCode里的常用快捷键

Alt Z&#xff1a;文字自动换行。当一行的文字太长时&#xff0c;可以使用。或者查看→自动换行Alt Shift ↓ &#xff1a;快速复制当前行到下一行Alt Shift ↑ &#xff1a;快速复制当前行到上一行Alt B&#xff1a;在默认浏览器中打开当前.html文件Ctrl Enter&#xf…