数据结构和算法专题---4、限流算法与应用

本章我们会对限流算法做个简单介绍,包括常用的限流算法(计数器、漏桶算法、令牌桶案发、滑动窗口)的概述、实现方式、典型场景做个说明。

什么是限流算法

限流是对系统的一种保护措施。即限制流量请求的频率(每秒处理多少个请求)。一般来说,当请求流量超过系统的瓶颈,则丢弃掉多余的请求流量,保证系统的可用性。即要么不放进来,放进来的就保证提供服务。

计数器

概述

计数器采用简单的计数操作,到一段时间节点后自动清零

实现

package com.ls.cloud.sys.alg.limit;import com.ls.cloud.common.core.util.DateUtil;import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.*;public class Counter {public static void main(String[] args) {//计数器,这里用信号量实现final Semaphore semaphore = new Semaphore(1);//定时器,到点清零ScheduledExecutorService service = Executors.newScheduledThreadPool(1);service.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {semaphore.release(1);}},3000,3000,TimeUnit.MILLISECONDS);//模拟无限请求从天而降降临while (true) {try {//判断计数器semaphore.acquire();} catch (InterruptedException e) {e.printStackTrace();}//如果准许响应,打印一个okDate date = new Date();SimpleDateFormat dateFormat= new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");System.out.println("执行------------"+ dateFormat.format(date));}}
}

结果分析

执行------------2023-12-05 02:17:33
执行------------2023-12-05 02:17:36
执行------------2023-12-05 02:17:39
执行------------2023-12-05 02:17:42
执行------------2023-12-05 02:17:45

优缺点

  • 优点:实现起来非常简单。
  • 缺点:控制力度太过于简略,假如1s内限制3次,那么如果3次在前100ms内已经用完,后面的900ms将只能处于阻塞状态,白白浪费掉

典型场景

使用计数器限流的场景较少,因为它的处理逻辑不够灵活。最常见的是登录验证码倒计时,60秒接收一次,如果在限流场景使用计数器,可能导致前面100ms进入全部流程,系统可能依然会出现宕机的情况。

漏桶算法

概述

漏桶算法将请求缓存在桶中,服务流程匀速处理。超出桶容量的部分丢弃。漏桶算法主要用于保护内部的处理业务,保障其稳定有节奏的处理请求,但是无法根据流量的波动弹性调整响应能力。现实中,类似容纳人数有限的服务大厅开启了固定的服务窗口。
在这里插入图片描述

实现

可以基于队列进行实现。

package com.ls.cloud.sys.alg.limit;import java.util.concurrent.*;public class Barrel {public static void main(String[] args) {//桶,用阻塞队列实现,容量为3final LinkedBlockingQueue<Integer> que = new LinkedBlockingQueue(3);//定时器,相当于服务的窗口,2s处理一个ScheduledExecutorService service = Executors.newScheduledThreadPool(1);service.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {// 删除队首元素int v = que.poll();System.out.println("处理:"+v);}},2000,2000,TimeUnit.MILLISECONDS);//无数个请求,i 可以理解为请求的编号int i=0;while (true) {i++;try {System.out.println("put:"+i);//如果是put,会一直等待桶中有空闲位置,不会丢弃
//                que.put(i);//等待1s如果进不了桶,就溢出丢弃que.offer(i,1000,TimeUnit.MILLISECONDS);} catch (Exception e) {e.printStackTrace();}}}}

结果

put:1
put:2
put:3
put:4
put:5
处理:1
put:6
put:7
处理:2
put:8
put:9
处理:3
put:10
put:11
处理:5
put:12
put:13
  • put任务号按照顺序入桶
  • 执行任务匀速的2s一个被处理
  • 因为桶的容量只有3,所以1-3完美执行,4被溢出丢弃,5正常执行

优缺点

  • 优点:有效的挡住了外部的请求,保护了内部的服务不会过载
  • 内部服务匀速执行,无法应对流量洪峰,无法做到弹性处理突发任务
  • 任务超时溢出时被丢弃。现实中可能需要缓存队列辅助保持一段时间

典型场景

nginx中的限流是漏桶算法的典型应用,配置案例如下:

http {    #$binary_remote_addr 表示通过remote_addr这个标识来做key,也就是限制同一客户端ip地址。       #zone=one:10m 表示生成一个大小为10M,名字为one的内存区域,用来存储访问的频次信息。    #rate=1r/s 表示允许相同标识的客户端每秒1次访问    limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;    server {        location /limited/ {        #zone=one 与上面limit_req_zone 里的name对应。        #burst=5 缓冲区,超过了访问频次限制的请求可以先放到这个缓冲区内,类似代码中的队列长度。#nodelay 如果设置,超过访问频次而且缓冲区也满了的时候就会直接返回503,如果没有设置,则所有请求会等待排队,类似代码中的put还是offer。                  limit_req zone=one burst=5 nodelay;    }} 

令牌桶

概述

令牌桶算法可以认为是漏桶算法的一种升级,它不但可以将流量做一步限制,还可以解决漏桶中无法弹性伸缩处理请求的问题。体现在现实中,类似服务大厅的门口设置门禁卡发放。发放是匀速的,请求较少时,令牌可以缓存起来,供流量爆发时一次性批量获取使用。而内部服务窗口不设限。
在这里插入图片描述

实现

package com.ls.cloud.sys.alg.limit;import java.util.concurrent.*;public class Token {public static void main(String[] args) throws InterruptedException {//令牌桶,信号量实现,容量为3final Semaphore semaphore = new Semaphore(3);//定时器,1s一个,匀速颁发令牌ScheduledExecutorService service = Executors.newScheduledThreadPool(1);service.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {if (semaphore.availablePermits() < 3){semaphore.release();}
//                System.out.println("令牌数:"+semaphore.availablePermits());}},1000,1000,TimeUnit.MILLISECONDS);//等待,等候令牌桶储存Thread.sleep(5);//模拟洪峰5个请求,前3个迅速响应,后两个排队for (int i = 0; i < 5; i++) {semaphore.acquire();System.out.println("洪峰:"+i);}//模拟日常请求,2s一个for (int i = 0; i < 3; i++) {Thread.sleep(1000);semaphore.acquire();System.out.println("日常:"+i);Thread.sleep(1000);}//再次洪峰for (int i = 0; i < 5; i++) {semaphore.acquire();System.out.println("洪峰:"+i);}//检查令牌桶的数量for (int i = 0; i < 5; i++) {Thread.sleep(2000);System.out.println("令牌剩余:"+semaphore.availablePermits());}}
}

结果

洪峰:0
洪峰:1
洪峰:2
洪峰:3
洪峰:4
日常:0
日常:1
日常:2
洪峰:0
洪峰:1
洪峰:2
洪峰:3
洪峰:4
令牌剩余:2
令牌剩余:3
令牌剩余:3
令牌剩余:3
令牌剩余:3
  1. 洪峰0-2迅速被执行,说明桶中暂存了3个令牌,有效应对了洪峰
  2. 洪峰3,4被间隔性执行,得到了有效的限流
  3. 日常请求被匀速执行,间隔均匀
  4. 第二波洪峰来临,和第一次一样
  5. 请求过去后,令牌最终被均匀颁发,积累到3个后不再上升

典型场景

springcloud中gateway可以配置令牌桶实现限流控制,案例如下:

cloud: gateway: routes: ‐ id:    limit_route uri:    http://localhost:8080/test filters: ‐   name:    RequestRateLimiter args: #限流的key,ipKeyResolver为spring中托管的Bean,需要扩展KeyResolver接口 key‐resolver:    '#{@ipResolver}' #令牌桶每秒填充平均速率,相当于代码中的发放频率 redis‐rate‐limiter.replenishRate:    1 #令牌桶总容量,相当于代码中,信号量的容量 redis‐rate‐limiter.burstCapacity:    3 

滑动窗口

概述

滑动窗口可以理解为细分之后的计数器,计数器粗暴的限定1分钟内的访问次数,而滑动窗口限流将1分钟拆为多个段,不但要求整个1分钟内请求数小于上限,而且要求每个片段请求数也要小于上限。相当于将原来的计数周期做了多个片段拆分,更为精细。

实现

在这里插入图片描述

package com.ls.cloud.sys.alg.limit;import java.util.LinkedList;
import java.util.Map;
import java.util.TreeMap;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;public class Window {//整个窗口的流量上限,超出会被限流final int totalMax = 5;//每片的流量上限,超出同样会被拒绝,可以设置不同的值final int sliceMax = 5;//分多少片final int slice = 3;//窗口,分3段,每段1s,也就是总长度3sfinal LinkedList<Long> linkedList = new LinkedList<>();//计数器,每片一个key,可以使用HashMap,这里为了控制台保持有序性和可读性,采用TreeMapMap<Long,AtomicInteger> map = new TreeMap();//心跳,每1s跳动1次,滑动窗口向前滑动一步,实际业务中可能需要手动控制滑动窗口的时机。ScheduledExecutorService service = Executors.newScheduledThreadPool(1);//获取key值,这里即是时间戳(秒)private Long getKey(){return System.currentTimeMillis()/1000;}public Window(){//初始化窗口,当前时间指向的是最末端,前两片其实是过去的2sLong key = getKey();for (int i = 0; i < slice; i++) {linkedList.addFirst(key-i);map.put(key-i,new AtomicInteger(0));}//启动心跳任务,窗口根据时间,自动向前滑动,每秒1步service.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {Long key = getKey();//队尾添加最新的片linkedList.addLast(key);map.put(key,new AtomicInteger());//将最老的片移除map.remove(linkedList.getFirst());linkedList.removeFirst();System.out.println("step:"+key+":"+map);;}},1000,1000,TimeUnit.MILLISECONDS);}//检查当前时间所在的片是否达到上限public boolean checkCurrentSlice(){long key = getKey();AtomicInteger integer = map.get(key);if (integer != null){return integer.get() < totalMax;}//默认允许访问return true;}//检查整个窗口所有片的计数之和是否达到上限public boolean checkAllCount(){return map.values().stream().mapToInt(value -> value.get()).sum()  < sliceMax;}//请求来临....public void req(){Long key = getKey();//如果时间窗口未到达当前时间片,稍微等待一下//其实是一个保护措施,放置心跳对滑动窗口的推动滞后于当前请求while (linkedList.getLast()<key){try {Thread.sleep(200);} catch (InterruptedException e) {e.printStackTrace();}}//开始检查,如果未达到上限,返回ok,计数器增加1//如果任意一项达到上限,拒绝请求,达到限流的目的//这里是直接拒绝。现实中可能会设置缓冲池,将请求放入缓冲队列暂存if (checkCurrentSlice() && checkAllCount()){map.get(key).incrementAndGet();System.out.println(key+"=通过:"+map);}else {System.out.println(key+"=拒绝:"+map);}}public static void main(String[] args) throws InterruptedException {Window window = new Window();//模拟10个离散的请求,相对之间有200ms间隔。会造成总数达到上限而被限流for (int i = 0; i < 10; i++) {Thread.sleep(200);window.req();}//等待一下窗口滑动,让各个片的计数器都置零Thread.sleep(3000);//模拟突发请求,单个片的计数器达到上限而被限流System.out.println("---------------------------");for (int i = 0; i < 10; i++) {window.req();}}
}

结果

1701766769=通过:{1701766767=0, 1701766768=0, 1701766769=1}
1701766769=通过:{1701766767=0, 1701766768=0, 1701766769=2}
1701766769=通过:{1701766767=0, 1701766768=0, 1701766769=3}
1701766769=通过:{1701766767=0, 1701766768=0, 1701766769=4}
step:1701766770:{1701766768=0, 1701766769=4, 1701766770=0}
1701766770=通过:{1701766768=0, 1701766769=4, 1701766770=1}
1701766770=拒绝:{1701766768=0, 1701766769=4, 1701766770=1}
1701766770=拒绝:{1701766768=0, 1701766769=4, 1701766770=1}
1701766770=拒绝:{1701766768=0, 1701766769=4, 1701766770=1}
1701766770=拒绝:{1701766768=0, 1701766769=4, 1701766770=1}
step:1701766771:{1701766769=4, 1701766770=1, 1701766771=0}
1701766771=拒绝:{1701766769=4, 1701766770=1, 1701766771=0}
step:1701766772:{1701766770=1, 1701766771=0, 1701766772=0}
step:1701766773:{1701766771=0, 1701766772=0, 1701766773=0}
step:1701766774:{1701766772=0, 1701766773=0, 1701766774=0}
---------------------------
1701766774=通过:{1701766772=0, 1701766773=0, 1701766774=1}
1701766774=通过:{1701766772=0, 1701766773=0, 1701766774=2}
1701766774=通过:{1701766772=0, 1701766773=0, 1701766774=3}
1701766774=通过:{1701766772=0, 1701766773=0, 1701766774=4}
1701766774=通过:{1701766772=0, 1701766773=0, 1701766774=5}
1701766774=拒绝:{1701766772=0, 1701766773=0, 1701766774=5}
1701766774=拒绝:{1701766772=0, 1701766773=0, 1701766774=5}
1701766774=拒绝:{1701766772=0, 1701766773=0, 1701766774=5}
1701766774=拒绝:{1701766772=0, 1701766773=0, 1701766774=5}
1701766774=拒绝:{1701766772=0, 1701766773=0, 1701766774=5}
step:1701766775:{1701766773=0, 1701766774=5, 1701766775=0}
step:1701766776:{1701766774=5, 1701766775=0, 1701766776=0}
step:1701766777:{1701766775=0, 1701766776=0, 1701766777=0}
step:1701766778:{1701766776=0, 1701766777=0, 1701766778=0}

典型场景

滑动窗口算法,在tcp协议发包过程中被使用。在web现实场景中,可以将流量控制做更细化处理,解决计数器模型控制力度太粗暴的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210373.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

11_企业架构web服务器文件及时同步

企业架构web服务器的文件及时同步 学习目标和内容 1、能够理解为何要服务器间文件同步 2、能够简单描述实现文件同步的几种方式 3、能够实现服务器文件实时同步的案例 一、同步文件介绍 1、服务器文件同步的必要性 根据业务发展需求&#xff0c;业务网站架构已经发展到以上模式…

Linux文件结构与文件权限

基于centos了解Linux文件结构 了解一下文件类型 Linux采用的一切皆文件的思想&#xff0c;将硬件设备、软件等所有数据信息都以文件的形式呈现在用户面前&#xff0c;这就使得我们对计算机的管理更加方便。所以本篇文章会对Linux操作系统的文件结构和文件权限进行讲解。 首先…

Qt生成动态链接库并使用动态链接库

项目结构 整个工程由一个主程序构成和一个模块构成(dll)。整个工程的结构目录如下 Define.priMyProject.proMyProject.pro.user ---bin ---MainProgrammain.cppMainProgram.proMainProgram.pro.userwidget.cppwidget.hwidget.ui ---MathDllMathDll.proMathDll.pro.userMyMath.…

Axios 拦截器实战教程:简单易懂

Axios 提供了一种称为 “拦截器&#xff08;interceptors&#xff09;” 的功能&#xff0c;使我们能够在请求或响应被发送或处理之前对它们进行全局处理。拦截器为我们提供了一种简洁而强大的方式来转换请求和响应、进行错误处理、添加认证信息等操作。在本文中&#xff0c;我…

Matlab 点云收缩L1中值(Weiszfeld算法)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 对于之前的加权均值收缩方式,它存在一个很大的缺点,即容易受到噪声的影响,因此这里我们采用另一种统计学方案:L1中值。其形式如下所示: 其中 x i x_i

MongoDB的条件操作符

本文主要介绍MongoDB的条件操作符。 目录 MongoDB条件操作符1.比较操作符2.逻辑操作符3.元素操作符4.数组操作符5.文本搜索操作符 MongoDB条件操作符 MongoDB的条件操作符主要分为比较操作符、逻辑操作符、元素操作符、数组操作符、文本搜索操作符等几种类型。 以下是这些操作…

对String类的操作 (超细节+演示)

[本节目标] 1.认识String类 2.了解String类的基本用法 3.熟练掌握String类的常见操作 4.认识字符串常量池 5.认识StringBuffer和StringBuilder 1.String类的重要性 在C语言中已经涉及到字符串了&#xff0c;但是在C语言中要表示字符串只能使用字符数组或者字符指针&…

高速风筒安规方案中的安规测试及安规电路特性介绍--【其利天下技术】

作为家用电子产品&#xff0c;高速吹风筒做安规测试&#xff0c;过安规要求是必须保证的&#xff0c;一般电路要过安规测试&#xff0c;那么安规测试的目的是什么呢&#xff1f; 安规测试字面意思是安全规范测试&#xff0c;主要强调对使用人员的安全保护&#xff0c;也就是我…

P7 Linux C三种终止进程的方法

前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Linux C应用编程&#xff08;概念类&#xff09;_ChenPi的博客-CSDN博客》✨✨✨ &#x1f6f8;推荐专栏3: ​​​​​​《 链表_Chen…

什么是MyBatis、什么是MyBatis-Plus、简单详细上手案例

什么是MyBatis MyBatis是一个开源的Java持久层框架&#xff0c;用于简化与关系型数据库的交互。它通过将SQL语句与Java代码进行分离&#xff0c;提供了一种优雅的方式来处理数据库操作。 MyBatis的核心思想是将SQL语句与Java方法进行映射&#xff0c;使得开发人员可以通过配置…

C语言数据结构-基于单链表实现通讯录

文章目录 1 基础要求2 通讯录功能2.1 引入单链表的文件2.2 定义联系人数据结构2.3 打开通讯录2.4 保存数据后销毁通讯录2.5 添加联系人2.6 删除联系人2.7 修改联系人2.8 查找联系人2.9 查看通讯录 3 通讯录代码展示3.1 SeqList_copy.h3.2 SeqList_copy.c3.3 Contact.h3.4 Conta…

模块化机房在大数据时代的角色:高效、可扩展的数据存储和处理平台

随着大数据时代的到来&#xff0c;数据已经成为企业竞争的核心资源。然而&#xff0c;传统的数据中心已经无法满足现代业务的需求&#xff0c;尤其是在数据存储和处理方面。模块化机房作为一种新型的数据中心建设模式&#xff0c;具有高效、可扩展等优势&#xff0c;逐渐成为大…

PyCharm编辑器结合Black插件,轻松实现Python代码格式化

大家好&#xff0c;使用Black对Python代码进行格式化&#xff0c;可使代码看起来更美观。但是&#xff0c;随着项目规模不断变大&#xff0c;对每个文件运行Black变得很繁琐。本文就来介绍在PyCharm中实现这一目标的方法。 1.安装Black 首先&#xff0c;在虚拟环境中安装Blac…

二叉树的锯齿形层序遍历[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给你二叉树的根节点 root &#xff0c;返回其节点值的 锯齿形层序遍历 。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 示例 1&#xff1a; 输…

认识线程和创建线程

目录 1.认识多线程 1.1线程的概念 1.2进程和线程 1.2.1进程和线程用图描述关系 1.2.2进程和线程的区别 1.3Java 的线程和操作系统线程的关系 2.创建线程 2.1继承 Thread 类 2.2实现 Runnable 接口 2.3匿名内部类创建 Thread 子类对象 2.4匿名内部类创建 Runnable 子类对…

使用贝叶斯网络检测因果关系,提升模型效果更科学(附Python代码)

虽然机器学习技术可以实现良好的性能&#xff0c;但提取与目标变量的因果关系并不直观。换句话说&#xff0c;就是&#xff1a;哪些变量对目标变量有直接的因果影响&#xff1f; 机器学习的一个分支是贝叶斯概率图模型(Bayesian probabilistic graphical models)&#xff0c;也…

【Com通信】Com模块详细介绍

目录 前言 1. Com模块功能介绍 2.关键概念理解 3.功能详细设计 3.1 Introduction 3.2 General Functionality 3.2.1 AUTOSAR COM basis 3.2.2 Signal Values 3.2.3 Endianness Conversion and Sign Extension 3.2.4 Filtering 3.2.5 Signal Gateway 3.3 Normal Ope…

2.2 网络多线程(私聊、群发、发送文件、推送新闻、离线留言)

文章目录 一、私聊1.1 分析1.2 客户端1.2.1 MessageClientService 私聊类1.2.2 ClientConnectServerThread 线程类 1.3 服务端1.3.1 ServerConnectClientThread 线程类 1.4功能演示 二、群发消息2.1 分析2.2 客户端2.2.1 MessageClientService类2.2.2 ClientConnectServerThrea…

通过仿真理解完整的阵列信号噪声模型

概要 噪声对无线电设备的信号接收会造成影响,是通信、雷达、导航、遥感等工程应用领域中的关键考虑因素。通常认为阵列合成能够提升信噪比,但忽略了这一论断的前提,即不同通道引入的噪声互不相关。但实际应用中,接收的噪声不仅仅包含信道引入的不相关噪声,还包含从外界环…

1-6、编程语言排行榜

语雀原文链接 https://www.tiobe.com/tiobe-index/