了解c++11中的新增

一,统一的初始化列表

在引入c++11后,我们得出计划都可以用初始化列表进行初始化。

C++11 扩大了用大括号括起的列表 ( 初始化列表 ) 的使用范围,使其可用于所有的内置类型和用户自
定义的类型, 使用初始化列表时,可添加等号 (=) ,也可不添加

int  main()
{int i = 0;int j = { 0 };int k{ 0 };int l(0);//如日期类return 0;
}//对象的初始化
struct Point{int _x;int _y;};int main(){int array1[] = { 1, 2, 3, 4, 5 };int array2[5] = { 0 };Point p = { 1, 2 };return 0;}//日期类对象的初始化
class Date
{
public:Date(int year, int month, int day):_year(year), _month(month), _day(day){cout << "Date(int year, int month, int day)" << endl;}
private:int _year;int _month;int _day;
};
int main()
{Date d1(2022, 1, 1); // old style// C++11支持的列表初始化,这里会调用构造函数初始化Date d2{ 2022, 1, 2 };Date d3 = { 2022, 1, 3 };//这里的本质就是,以该参数构造对象再拷贝给给这里的对象Date* d4 = new Date[3]{ {2023,5,3}, {2022, 1, 3},{2023,1,2} };return 0;
}

数组与链表的初始化

int main()
{vector<int> v = { 1,2,3,4,5,6 };list<string> l = { "hello","world" };return 0;
}

并且再c++11引入了std::initializer_list ,一种特殊的构造方式:

initiallizer_list

initializer_list是C++11提供的新类型,定义在头文件中。 用于表示某种特定类型的值的数组,和vector一样,initializer_list也是一种模板类型。即一组数据的类型。

一般它的作用也就是为了支持容器的参数列表的构造。

如下:通过typeid我们来查看il的类型,

库中的定义: 

 

 库中实现了三个成员函数,分别是首尾和大小。我们不难看出这肯定是实现了迭代器,也确实是这样样,他的迭代器就是他的原生指针。

int main()
{auto il = { 1,2,3,4,5 };cout << typeid(il).name()<<endl;auto it = il.begin();while (it != il.end()){cout << *it;it++;}cout << endl;for (auto it : il){cout << it;}return 0;
}

 对于initailizer_list,不仅仅是一般的类型的数据的和,对于vector,list,map,set等构造都支持参数列表(nitailizer_list)这样的初始化:

int main()
{pair<string, string> kv = { "希尔排序","1" };map<string, string> p = { kv,{"冒泡排序","2"},{"快速排序","3"}};//初始化map时,除了用pair,我们这里也可以用initializer_list  ->实际上回隐式类型转换为pairfor(auto &it:p){cout << it.first<<" "<<it.second<< endl;}return 0;
}

 二,声明

auto

C++98 auto 是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局
部的变量默认就是自动存储类型,所以 auto 就没什么价值了。 C++11 中废弃 auto 原来的用法,将
其用于实现自动类型腿断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初
始化值的类型。

自动类型推导,更加简便的声明。实际当中,我们一般范围for用,

decltype

关键字 decltype 将变量的类型声明为表达式指定的类型。
int main()
{//对于类型推导 我们知道typidint i = 10;double j = 10.2;cout << typeid(i).name() << endl;cout << typeid(j).name() << endl;//获取类型的字符串 但不能当作类型去定义 //我们平时需要定义时就用auto定义,但若我们的模板参数需要这个类型如何取到这个类型//利用关键字decltype 获取数据类型vector<decltype(j)> v;v.push_back(1);v.push_back(2);for (int i = 0; i < v.size(); i++){cout << v[i]<<" ";}decltype(j) data;//可以当作类型用定义return 0;}

三,范围for

就是迭代器基础实现的遍历,写起来更加方便,我们差不多已经都熟练使用。

四,智能指针

智能指针主要用于管理在堆上分配的内存,它将普通的指针封装为一个栈对象。当栈对象的生存周期结束后,会在析构函数中释放掉申请的内存,从而防止内存泄漏。C++ 11中最常用的智能指针类型为shared_ptr,它采用引用计数的方法,记录当前内存资源被多少个智能指针引用。该引用计数的内存在堆上分配。

五,c++11种STL库中的变化

  新容器:forward_list(单链表),arry(静态数组),两个哈希表封装的无序关联容器unordered_map,unordered_set。

实际应用中,arry没谁用,我们有vetor,单链表意义也不大,虽然节省空间,但对于尾删效率太低下了,较有大用处的是者两个无序容器.

六,右值引用与移动语义(重要)

什么是左值,什么是右值?

传统的 C++ 语法中就有引用的语法,而 C++11 中新增了的右值引用语法特性。
我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名
什么是左值?左值引用?
左值是一个表示数据的表达式(如变量名或解引用的指针) 我们可以获取它的地址 + 可以对它赋
值, 左值可以出现赋值符号的左边,右值不能出现在赋值符号左边 。定义时 const 修饰符后的左
值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名。
int main()
{//下面三个变量都是左值     我们可以给它赋值,主要看他是否可以取地址int* p = new int(1);int b = 0;const int c = 10;//i还是左值int i = 0;int j = i;}

什么是右值?右值引用?
右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值 ( 这个不能是左值引
用返回 ) 等等, 右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边, 右值不能
取地址 。右值引用就是对右值的引用,给右值取别名。
int main()
{int i = 0, j = 0;//如下都是右值  右值可以是表达式,返回值,右值无法取地址10;i + j;fmin(i , j);//之前的引用都是左值引用,我们来看看右值引用int&& r = 10;double &&r1= i + j;int&& min = fmin(i, j);}

左值引用不能直接给给右值取别名,需要const。右值引用也不能直接给左值引用,这里可以move后引用。

int main()
{//左值引用给右值取别名,不能直接引用,右值不能被修改,因此需要constconst int& i = 10;int&& j = 10;//右值引用右值int&& m = i + j;//右值引用引用左值     不能直接引用,还是需要转化类型   //右值引用可以给move后的左值引用int p = 10; int q = 10;int&& r = move(q);int&& n = (const int) q;}

引入右值引用与左值引用的效果一样,减少大量拷贝。

那么右值引用是如何使用的?

右值引用的场景

因为在函数的返回值中,如果要对函数返回的值引用,则必须要满足,在函数的声明周期结束后,值的生命周期还在,否则就无法使用引用。

那我们想要返回该如何?比如说我们自己实现string里面的tostring:
//那么如何实现这里的ret返回引用呢?
string tostring(int x)
{string ret;while (x){int val = x % 10;x = x / 10;ret += (val + '0');}reverse(ret.begin(),ret.end());return ret;
}

在正常引用函数的返回值肯定不行。

首先函数返回值是一个右值,我们需要使用右值引用,其次右值引用还是要考虑到该问题,函数调用完毕,释放函数栈帧时,对应的返回值的生命周期也结束了,此时引用,引用的就是个空。
首先在c++中,右值分为纯右值与将亡值(自定义的右值)。
首先对于正常的返回,不调用引用,过程是这样的:

首先ret在这里会调用三次深拷贝,代价太大,那么有无优化的方案?

 对于这里的ret,还是传值返回,但是在即将销毁时,我们可以将它识别是一个将亡值(右值),对于将亡值,我们拷贝构造时,使用右值引用传参(移动拷贝),直接把资源转移过来,不再进行深度拷贝,但是在进入main函数中的拷贝之后,赋值是不支持右值对象的,因此这里还需要实现右值赋值。

amespace myspace
{class string{public:typedef char* iterator;iterator begin(){return _str;}iterator end(){return _str + _size;}string tostring(int x){string ret;while (x){int val = x % 10;x = x / 10;ret += (val + '0');}return ret;}string(const char* str = ""):_size(strlen(str)), _capacity(_size){_str = new char[_capacity + 1];strcpy(_str, str);}void swap(string& s){::swap(_str, s._str);::swap(_size, s._size);::swap(_capacity, s._capacity);}// 拷贝构造string(const string& s):_str(nullptr){cout << "string(const string& s) -- 深拷贝" << endl;string tmp(s._str);swap(tmp);}// 赋值重载string& operator=(const string& s){cout << "string& operator=(string s) -- 深拷贝" << endl;string tmp(s);swap(tmp);return *this;}// 移动构造  右值引用string(string&& s):_str(nullptr), _size(0), _capacity(0){cout << "string(string&& s) -- 移动语义" << endl;swap(s);}// 移动赋值  右值引用string& operator=(string&& s){cout << "string& operator=(string&& s) -- 移动语义" << endl;swap(s);return *this;}~string(){delete[] _str;_str = nullptr;}char& operator[](size_t pos){assert(pos < _size);return _str[pos];}void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];strcpy(tmp, _str);delete[] _str;_str = tmp;_capacity = n;}}void push_back(char ch){if (_size >= _capacity){size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;reserve(newcapacity);}_str[_size] = ch;++_size;_str[_size] = '\0';}//string operator+=(char ch)string& operator+=(char ch){push_back(ch);return *this;}const char* c_str() const{return _str;}private:char* _str;size_t _size;size_t _capacity; // 不包含最后做标识的\0};
}

通过右值引用我们减掉了深度拷贝的代价。这里我们一般还可以通过调试查看函数调用信息,

对于将亡值,我们一般使用move将一个左值转化为将亡值。自定义的右值一般也是将亡值。

仔细看的话,用过右值引用,我们还将他的生命周期延长了,我们通过右值引用使得这份资源还在。

当然我这里的右值引用,移动构造对于深拷贝就能发挥它的作用,浅拷贝的自定义类型没什么用。

注意:注意move移动语义,本是是不会改变这个值的属性,而是调用后的返回值的类型发生了改变。

其次对于一个右值的引用之后它的属性是一个左值,因为右值不能被修改,但是右值的右值引用可以被修改,否则无法实现移动构造,与移动复制。

库中的一些应用

 除了返回值可以被引用外,移动构造与移动拷贝相对于左值的拷贝构造,赋值。更加的快速和节省空间,因为我们这里直接是引用。

通过右值引用实现了返回值的引用,以这种方式许多场景下的应用就可以实现了。

c+11后,我们通过转化为右值,使用移动构造,移动拷贝,效率就会高许多。

STL容器在c++11后,都增加了移动构造与移动赋值。

vector的构造与赋值

 

list的构造与赋值

以及push操作也基本添加了右值版本:

万能引用

c++11在提供右值及右值引用后,还增加了万能引用。

所谓的万能引用,就是模板参数的引用,这里用的是&&,但不代表是右值引用。

格式如下:

template<typename T>
void PerfectForward(T&& t)
{Fun(t);
}

通过万能引用,是左值就调左值引用,是右值就调右值引用。但是还是要记住一点,右值被右值引用之后,属性是左值,因此在处理右值传参用右值对应的接口,我们都需要吧接口里的值的类型在move一下。

注意事项:

针对移动构造函数和移动赋值运算符重载有一些需要注意的点如下:
如果你没有自己实现移动构造函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中的任
意一个。那么编译器会自动生成一个默认移动构造。默认生成的移动构造函数,对于内置类
型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动构造,
如果实现了就调用移动构造,没有实现就调用拷贝构造。
如果你没有自己实现移动赋值重载函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中
的任意一个,那么编译器会自动生成一个默认移动赋值。默认生成的移动构造函数,对于内
置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动赋
值,如果实现了就调用移动赋值,没有实现就调用拷贝赋值。 ( 默认移动赋值跟上面移动构造
完全类似 )
如果你提供了移动构造或者移动赋值,编译器不会自动提供拷贝构造和拷贝赋值。

七.defalut与delete

强制生成默认函数的关键字default,;取消生成默认函数的关键字delete:
C++11可以让你更好的控制要使用的默认函数。假设你要使用某个默认的函数,但是因为一些原
因这个函数没有默认生成。比如:我们提供了拷贝构造,就不会生成移动构造了,那么我们可以
使用default关键字显示指定移动构造生成。 当然我们也可以取消不让这些函数生成。

八,模板的可变参数

首先我们知道函数的参数可以是可变参数,c++11对模板也引入了可变参数。

这里的参数,我们叫可变参数包,

template<class ...Args> //模板的可变参数包
void show(Args...arg)
{//可以包含任意多个类型的参数
}
STL容器中的 empalce相关接口函数:就是可变参数
emplace 系列的接口,支持模板的可变参数,并且也可以万能引用。
以vector为例,在c++11当中增加了两个家口,emplace与emplace_back,这两个接口都是用来
插入的,emplace_back尾插,那么这两个插入与insert有什么区别呢?
首先就是可变参数,emplace会根据参数将Args作为构造函数的参数构造出一个该元素,然后插入其中。
#include <iostream>
#include <vector>int main ()
{std::vector<int> myvector = {10,20,30};myvector.emplace_back (100);myvector.emplace_back (200);std::cout << "myvector contains:";for (auto& x: myvector)std::cout << ' ' << x;std::cout << '\n';return 0;
}//运行结果  myvector contains: 10 20 30 100 200

在引入移动构造与构造时,insert就是先构造,在移动构造插入,而对于emplace是直接构造插入。对于大一点的浅拷贝的自定义类型,emplace相对于会更好一点。

九,lambda表达式

在c++98之前,比如我们在用sort进行排序时,我们是传一个仿函数,且该种排序只能支持库里提供的类型,另外的类型就需要我们重写一个仿函数传进去。

操了c++11,虽然问题得到了解决,但是人们认为这样写还是太过麻烦,比如每次传参进去的仿函数都必须以它如何排序的方式进行命名,因为具体实现的比较我们是看不到的,因此借鉴了python的lambda表达式,实现更加方便,更加清晰的比较。

lambda表达式的构成:

lambda 表达式书写格式: [capture-list] (parameters) mutable -> return-type { statement
}
lambda 表达式各部分说明:
[capture-list] : 捕捉列表 ,该列表总是出现在 lambda 函数的开始位置, 编译器根据 []
判断接下来的代码是否为 lambda 函数 捕捉列表能够捕捉上下文中的变量供 lambda
函数使用
(parameters) :参数列表。与 普通函数的参数列表一致 ,如果不需要参数传递,则可以
连同 () 一起省略。
mutable :默认情况下, lambda 函数总是一个 const 函数, mutable 可以取消其常量
性。使用该修饰符时,参数列表不可省略 ( 即使参数为空 ) 。---不需要一般可以忽略不写
->returntype :返回值类型 。用 追踪返回类型形式声明函数的返回值类型 ,没有返回
值时此部分可省略。 返回值类型明确情况下,也可省略,由编译器对返回类型进行推
{statement} :函数体 。在该函数体内,除了可以使用其参数外,还可以使用所有捕获
到的变量。

事实上lalmbda本质就是一个函数对象,我们一般这样去使用它:

int main()
{//比如简单写一个打印出入的参数
auto it=	[]       (int x)    ->int   { cout << x; return 0; };//捕捉列表  参数列表  返回类型   函数体//我们一般用auto自定推导类型来获取这个对象it(1);//对象传参
//当然我们也可以省略返回值类型,它可以自动推导
//auto it=[](int x){ cout << x; return 0; };return 0;
}

 那么我们就可以用lambda去替换仿函数。

现在我们就可以用lambda表达式去实现仿函数一样的功能:

int main()
{vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2, 3 }, { "菠萝", 1.5, 4 } };//仿函数sort(v.begin(), v.end(), ComparePriceLess());sort(v.begin(), v.end(), ComparePriceGreater());//lambda//这里的lambda可以理解为匿名函数对象sort(v.begin(), v.end(), [](Goods &it1,  Goods& it2) {return it1._price > it2._price; });sort(v.begin(), v.end(), [](Goods &it1, Goods& it2) {return it1._price < it2._price; });return 0;
}

因为sort函数提供的是模板(对于比较这一部分),因此我们只要传参可调用的对象就可以。

那么有人就开始疑惑了,lambda返回类型到底是一个什么?通过typeid我们可以看看:

int main()
{auto p=[](Goods& it1, Goods& it2) {return it1._price > it2._price; };auto q = [](Goods& it1, Goods& it2) {return it1._price > it2._price; };cout << typeid(p).name()<<endl;cout << typeid(q).name()<<endl;
}

 实际上是一个类,每个lambda都有自己对应的类。

关于捕捉列表,lambda表的是其他构成我们能理解,但对于捕捉列表是什么呢?

所谓的捕捉,就是可以将父作用域里的变量直接拿来使用,但传值过来的变量无法被修改。

除了传值,也可以传引用捕捉,但在书写方面与取地址写法一样,注意别混淆。

传值就是普通函数传参,传引就是引用传参。如果想捕捉地址,就实现把地址取出来。

当然捕捉引用时,它自动传参时,此时就不再使用mutable了。

即:

int x = 1; int y = 2;//不捕获时auto q = [](int x, int y)->void{int temp = x;x = y;y = temp;};q(x, y);//这里只是作为参数传递过去,形参的改变不影响实参cout<<x<<" " << y << endl;//捕获时,但注意,这里虽然捕获了,可以直接用//但此时默认情况下这里的函数是不能修改的,需要加入mutable表示可修改auto p = [x, y]()mutable-> void {int temp = x;x = y;y = temp;};p();//这里只是作为参数传递过去,形参的改变不影响实参cout << x << " " << y << endl;auto n = [&x, &y]()-> void{int temp = x;x = y;y = temp;};n();//这里是传引用,因此会完成交换cout << x << " " << y << endl;

lambda的原理也是仿函数。

十,包装器

function

有了仿函数,lambda,实际上还有函数指针,这三个本质其实都一样,都是一个函数,可以被其他对象调用去实现某个功能。因为除了函数指针和仿函数还能传,lanmbda的类型我们是不得而知的,需要function去将这些包装,我们能直接获取其类型。

因此在c++11中又提出一个概念包装器,就是跟适配器一样。

我们之前学习单链表,栈和队列等就是用vector,list去适配出这样的一个结构。

而这里的包装器,就是用函数指针,或者lambda,仿函数去适配(包装)我们所需要的一个“函数对象”,去被调用。

语法:class function

std::function 在头文件 < functional >
// 类模板原型如下
template < class T > function ;     
template < class Ret , class ... Args >
class function < Ret ( Args ...) > ;
模板参数说明:
Ret : 被调用函数的返回类型
Args… :被调用函数的形参

 function的本质就是一个类模板,适配就是去适配 仿函数,函数指针,lambda的其中一个。

//包装器 function
//我们还是以交换两个整数为例
//仿函数
struct Swap1
{void operator()(int& x, int& y){int temp = x;x = y;y = temp;}
};
//函数
void Swap2(int& x,int& y)
{int temp = x;x = y;y = temp;
}
//lambda
auto Swap3 = [](int& x, int& y)->void {int temp = x; x = y; y = temp; };
//首先我们先来使用一下
int main()
{int x = 1; int y = 2;//可以包装这三个function<void(int&, int&)> p1 = Swap1();p1(x, y);cout << x << " " << y << endl;function<void(int&, int&)> p2 = Swap2;p2(x, y);cout << x << " " << y << endl;function<void(int&, int&)> p3 = Swap3;p3(x, y);cout << x << " " << y << endl;//通过function模板 ,在传入参数时,我们就可以选择三个其中之一进行传参map<string, function<void(int&, int&)> >  op = { {"仿函数", Swap1()},{"函数指针", Swap2},{"lambda", Swap3} };/*m.insert(make_pair("仿函数", Swap1()));m.insert(make_pair("函数指针", Swap2));m.insert(make_pair("仿函数", Swap3));*///map<string, function<void(int&, int&)> >  m = { {"仿函数", p1},{"函数指针", p2},{"仿函数", p3} };op["仿函数"](x, y); op["函数指针"](x, y);op["lambda"](x, y);}

当然这里我们的函数的参数类型是一样的。

包装成员函数

在包装成员函数时,我们需要注意几点:

1.指定类域

2.要在成员函数前加&符号,才表示成员函数的地址

3.传参需要加入他的地址

class Func
{
public:static int Add1(int x, int y){return x + y;}double Add2(double  x, double  y){return x + y;}
};
int main()
{//如果是static,我们可以直接包装function<int(int, int)> p1 = Func::Add1;cout << p1(1, 2)<<endl;//如果是普通成员函数,则还需要一个对象指针Func a;function<double(Func*, double, double)> p2 = &Func::Add2;cout << p2(&a, 1.1, 2.1) << endl;//对象也可以function<double(Func a, double, double)> p3 = &Func::Add2;Func b;cout << p3(b,1.2, 2.3) << endl;
}

bind

除了function,还有第二个包装器bind:

std::bind 函数定义在头文件中, 是一个函数模板,它就像一个函数包装器 ( 适配器 ) 接受一个可
调用对象( callable object ),生成一个新的可调用对象来 适应 原对象的参数列表 。一般而
言,我们用它可以把一个原本接收 N 个参数的函数 fn 通过绑定一些参数,返回一个接收M个(M
可以大于N,但这么做没什么意义)参数的新函数 。同时,使用 std::bind 函数还可以实现参数顺
序调整等操作。
// 原型如下:
template < class Fn , class ... Args >
/* unspecified */ bind ( Fn && fn , Args && ... args );
// with return type (2)
template < class Ret , class Fn , class ... Args >
/* unspecified */ bind ( Fn && fn , Args && ... args )

 可以用来调整参数的位置,

int main()
{//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1, placeholders::_2);//表示绑定函数 plus 的第一,二为: 1, 2auto  func2 = std::bind(Plus, 1, 2);   cout << func1(1, 2) << endl;cout << func2() << endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210080.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue学习计划-Vue2--VueCLi(二)vuecli脚手架创建的项目内部主要文件分析

1. 文件分析 1. 补充&#xff1a; 什么叫单文件组件&#xff1f; 一个文件中只有一个组件 vue-cli创建的项目中&#xff0c;.vue的文件都是单文件组件&#xff0c;例如App.vue 2. 进入分析 1. package.json: 项目依赖配置文件&#xff1a; 如图&#xff0c;我们说主要的属性…

性能测试经典面试题(带答案)!

概述一下性能测试流程&#xff1f; 1.分析性能需求。挑选用户使用最频繁的场景来测试。确定性能指标&#xff0c;比如&#xff1a;事务通过率 为100%&#xff0c;TOP99%是5秒&#xff0c;最大并发用户为1000人&#xff0c;CPU和内存的使用率在70%以下2.制定性能测试计划&…

Ubuntu20.04使用cephadm部署ceph集群

文章目录 Requirements环境安装Cephadm部署Ceph单机集群引导&#xff08;bootstrap&#xff09;建立新集群 管理OSD列出可用的OSD设备部署OSD删除OSD 管理主机列出主机信息添加主机到集群从集群中删除主机 部署Ceph集群 Cephadm通过在单个主机上创建一个Ceph单机集群&#xff0…

【EI会议征稿中】第三届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2024)

第三届网络安全、人工智能与数字经济国际学术会议&#xff08;CSAIDE 2024&#xff09; 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy 第二届网络安全、人工智能与数字经济国际学术会议&#xff08;CSAIDE 2023&…

Verilog基础:寄存器输出的两种风格

相关文章 Verilog基础https://blog.csdn.net/weixin_45791458/category_12263729.html?spm1001.2014.3001.5482 Verilog中的寄存器操作一般指的是那些对时钟沿敏感而且使用非阻塞赋值的操作。例如状态机中的状态转移&#xff0c;实际上就是一种寄存器操作&#xff0c;因为这相…

听GPT 讲Rust源代码--src/tools(10)

File: rust/src/tools/rust-analyzer/crates/ide-assists/src/handlers/generate_is_empty_from_len.rs 在Rust源代码中&#xff0c;rust-analyzer是一个Rust语言的IDE插件和代码分析器。其中&#xff0c;generate_is_empty_from_len.rs是rust-analyzer中的一个处理程序&#x…

CentOS7安装Docker,DockerCompose

安装docker 1、卸载docker 查看是否有旧版本docker docker info首先检测我们虚拟机是否已经安装过Docker&#xff0c;如果安装则需卸载。代码中“\”符号为换行符&#xff0c;相当于一行内容分为多行&#xff0c;这是检测docker的各种组件 yum remove docker \docker-clien…

VGG模型

概念&#xff1a; CNN感受野 在卷积神经网络中&#xff0c;决定某一层输出结果中的一个元素所对应的输入层的区域大小&#xff0c;被称作感受野&#xff08;receptive field&#xff09;。通俗的解释是&#xff0c;输出feature map上的一个单元对应输入层上的区域大小。 VGG…

协同过滤算法springboot+java+ssm高校图书馆图书借阅管理系统k32vr

课题主要分为四大模块&#xff1a;即管理员模块&#xff0c;员工模块&#xff0c;教师模块和学生模块&#xff0c;主要功能包括&#xff1a;首页&#xff0c;个人中心&#xff0c;员工管理&#xff0c;学生管理&#xff0c;教师管理&#xff0c;图书分类管理&#xff0c;图书信…

HNU计算机结构体系-实验2:CPU动态指令调度Tomasulo

文章目录 实验2 CPU动态指令调度Tomasulo一、实验目的二、实验说明三、实验内容问题1&#xff1a;问题2&#xff1a;问题3&#xff1a;问题4&#xff1a;问题5&#xff1a; 四、思考题问题1&#xff1a;问题2&#xff1a; 五、实验总结 实验2 CPU动态指令调度Tomasulo 一、实验…

【数据挖掘】国科大苏桂平老师数据库新技术课程作业 —— 第三次作业

part 1 设计一个学籍管理小系统。系统包含以下信息&#xff1a; 学号、学生姓名、性别、出生日、学生所在系名、学生所在系号、课程名、课程号、课程类型&#xff08;必修、选修、任选&#xff09;、学分、任课教师姓名、教师编号、教师职称、教师所属系名、系号、学生所选课…

【算法每日一练]-结构优化(保姆级教程 篇5 树状数组)POJ3067日本 #POJ3321苹果树 #POJ2352星星

目录 今天知识点 求交点转化求逆序对&#xff0c;每次操作都维护一个y点的前缀和 树的变动转化成一维数组的变动&#xff0c;利用时间戳将节点转化成区间 先将y排序&#xff0c;然后每加入一个就点更新求一次前缀和 POJ3067&#xff1a;日本 思路&#xff1a; POJ3321苹…

案例063:基于微信小程序的传染病防控宣传系统

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder …

leetcode系列:反转链表的形象表示

反转链表是一道比较简单的题&#xff0c;主要考察的是对链表数据结构的理解和双指针应用&#xff0c;比较容易出错的地方是指针的移动顺序。在练习的过程中想到了一个比较形象的表示方法&#xff0c;于是记录下来。 # Definition for singly-linked list. # class ListNode: #…

地理信息系统概论

地理信息系统概论 第一章导论第二章地理信息系统的数据结构第三章空间数据的处理第四章地理信息系统空间数据库第五章空间分析的原理与方法第六章地理信息系统的应用模型第七章地理信息系统的设计与评价第八章地理信息系统产品的输出与设计 第一章导论 数据与信息的关系&#…

Java基础-java.util.Scanner接收用户输入

目录 1. 导入所需要的jar包2. 编写代码运行3. 输出运行结果 1. 导入所需要的jar包 import java.util.Scanner;2. 编写代码运行 public class ScannerDemo {public static void main(String[] args) {/** 使用Scanner接收用户键盘输入的数据* 1. 导包&#xff1a;告诉程序去JD…

【Python】translate包报错RuntimeError: generator raised StopIteration

根据网上有些教程&#xff0c;使用translate包翻译稍微复杂语句的时候&#xff0c;会报错RuntimeError: generator raised StopIteration 实际测试之后发现&#xff0c;主要是from_lang、to_lang两个参数的设置有问题&#xff0c;比如有人说中文写"Chinese"、"Z…

Mysql、Oracle安全项检查表及操作脚本

软件开发全资料获取&#xff1a;点我获取 Mysql检查表 Oracle检查表

Anaconda建虚拟环境并在jupyter中打开

1.假设要用yaml格式创建虚拟环境 从开始里打开anaconda powersheel 输入以下 conda env create -f environment.yaml conda activate env_name activate以下虚拟环境 修改名称 如果不用yaml也可以用 conda create --name my_first_env python3.6 这个来指定 2.(base)变(…

C语言 位运算符 + 应用

常用的位运算符 按位与 快速判断整数的奇偶性 奇数的二进制表示的最低位为1&#xff0c;偶数的二进制表示的最低位为0。 int num 9; if (num & 1) {// num 是奇数 } else {// num 是偶数 }按位异或 交换两个变量的值 int a 5; int b 7; a a ^ b; b a ^ b; a a ^ …