YOLOv8改进 | 2023 | RCS-OSA替换C2f实现暴力涨点(减少通道的空间对象注意力机制)

一、本文介绍

 本文给大家带来的改进机制是RCS-YOLO提出的RCS-OSA模块,其全称是"Reduced Channel Spatial Object Attention",意即"减少通道的空间对象注意力"。这个模块的主要功能是通过减少特征图的通道数量,同时关注空间维度上的重要特征,来提高模型的处理效率和检测精度。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.6左右)同时本文对RCS-OSA模块的框架原理进行了详细的分析,不光让大家会添加到自己的模型在写论文的时候也能够有一定的参照,最后本文会手把手教你添加RCS-OSA模块到网络结构中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

这次试验我用的数据集大概有七八百张照片训练了150个epochs,虽然没有完全拟合但是效果有很高的涨点幅度,所以大家可以进行尝试毕竟不同的数据集上效果也可能差很多,同时我在后面给了多种yaml文件大家可以分别进行实验来检验效果。

可以看到这个涨点幅度mAP直接涨了大概有0.6左右,这个涨幅还是很好的,所以非常建议大家进行尝试这个机制的改进。

目录

一、本文介绍

二、RCS-OSA模块原理

2.1 RCS-OSA的基本原理

2.2 RCS

2.3 RCS模块

2.4 OSA

2.5 特征级联

三、RCS-OSA核心代码

四、手把手教你添加RCS-OSA模块

4.1 RCS-OSA添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

4.2 RCS-OSA的yaml文件和训练截图

4.2.1 RCS-OSA的yaml版本一(推荐)

4.2.2 RCS-OSA的yaml版本二

4.2.2 RCS-OSA的训练过程截图 

五、本文总结


二、RCS-OSA模块原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 RCS-OSA的基本原理

RCSOSA(RCS-One-Shot Aggregation)RCS-YOLO中提出的一种结构,我们可以将主要原理概括如下:

1. RCS(Reparameterized Convolution based on channel Shuffle): 结合了通道混洗,通过重参数化卷积来增强网络的特征提取能力。

2. RCS模块: 在训练阶段,利用多分支结构学习丰富的特征表示;在推理阶段,通过结构化重参数化简化为单一分支,减少内存消耗。

3. OSA(One-Shot Aggregation): 一次性聚合多个特征级联,减少网络计算负担,提高计算效率。

4. 特征级联: RCS-OSA模块通过堆叠RCS,确保特征的复用并加强不同层之间的信息流动。


2.2 RCS

RCS(基于通道Shuffle的重参数化卷积)是RCS-YOLO的核心组成部分,旨在训练阶段通过多分支结构学习丰富的特征信息,并在推理阶段通过简化为单分支结构来减少内存消耗,实现快速推理。此外,RCS利用通道分割和通道Shuffle操作来降低计算复杂性,同时保持通道间的信息交换,这样在推理阶段相比普通的3×3卷积可以减少一半的计算复杂度。通过结构重参数化,RCS能够在训练阶段从输入特征中学习深层表示,并在推理阶段实现快速推理,同时减少内存消耗。


2.3 RCS模块

RCS(基于通道Shuffle的重参数化卷积)模块中,结构在训练阶段使用多个分支,包括1x1和3x3的卷积,以及一个直接的连接(Identity),用于学习丰富的特征表示。在推理阶段,结构被重参数化成一个单一的3x3卷积,以减少计算复杂性和内存消耗,同时保持训练阶段学到的特征表达能力。这与RCS的设计理念紧密相连,即在不牺牲性能的情况下提高计算效率。

上图为大家展示了RCS的结构,分为训练阶段(a部分)推理阶段(b部分)。在训练阶段,输入通过通道分割,一部分输入经过RepVGG块,另一部分保持不变。然后通过1x1卷积和3x3卷积处理RepVGG块的输出,与另一部分输入进行通道Shuffle和连接。在推理阶段,原来的多分支结构被简化为一个单一的3x3 RepConv块。这种设计允许在训练时学习复杂特征,在推理时减少计算复杂度。黑色边框的矩形代表特定的模块操作,渐变色的矩形代表张量的特定特征,矩形的宽度代表张量的通道数。 


2.4 OSA

OSA(One-Shot Aggregation)是一个关键的模块,旨在提高网络在处理密集连接时的效率。OSA模块通过表示具有多个感受野的多样化特征,并在最后的特征映射中仅聚合一次所有特征,从而克服了DenseNet中密集连接的低效率问题。

OSA模块的使用有两个主要目的:

1. 提高特征表示的多样性:OSA通过聚合具有不同感受野的特征来增加网络对于不同尺度的敏感性,这有助于提升模型对不同大小目标的检测能力。

2. 提高效率:通过在网络的最后一部分只进行一次特征聚合,OSA减少了重复的特征计算和存储需求,从而提高了网络的计算和能源效率。

在RCS-YOLO中,OSA模块被进一步与RCS(基于通道Shuffle的重参数化卷积)相结合,形成RCS-OSA模块。这种结合不仅保持了低成本的内存消耗,而且还实现了语义信息的有效提取,对于构建轻量级和大规模的对象检测器尤为重要。

下面我将为大家展示RCS-OSA(One-Shot Aggregation of RCS)的结构。

在RCS-OSA模块中,输入被分为两部分,一部分直接通过,另一部分通过堆叠的RCS模块进行处理。处理后的特征和直接通过的特征在通道混洗(Channel Shuffle)后合并。这种结构设计用于增强模型的特征提取和利用效率,是RCS-YOLO架构中的一个关键组成部分旨在通过一次性聚合来提高模型处理特征的能力,同时保持计算效率。


2.5 特征级联

特征级联(feature cascade)是一种技术,通过在网络的一次性聚合(one-shot aggregate)路径上维持有限数量的特征级联来实现的。在RCS-YOLO中,特别是在RCS-OSA(RCS-Based One-Shot Aggregation)模块中,只保留了三个特征级联。

特征级联的目的是为了减轻网络计算负担并降低内存占用。这种方法可以有效地聚合不同层次的特征,提高模型的语义信息提取能力,同时避免了过度复杂化网络结构所带来的低效率和高资源消耗。

下面为大家提供的图像展示的是RCS-YOLO的整体架构,其中包括RCS-OSA模块。RCS-OSA在模型中用于堆叠RCS模块,以确保特征的复用并加强不同层之间的信息流动。图中显示的多层RCS-OSA模块的排列和组合反映了它们如何一起工作以优化特征传递和提高检测性能。

总结:RCS-YOLO主要由RCS-OSA(蓝色模块)和RepVGG(橙色模块)构成。这里的n代表堆叠RCS模块的数量。n_cls代表检测到的对象中的类别数量。图中的IDetect是从YOLOv7中借鉴过来的,表示使用二维卷积神经网络的检测层。这个架构通过堆叠的RCS模块和RepVGG模块,以及两种类型的检测层,实现了对象检测的任务。 


三、RCS-OSA核心代码

在这里说一下这个原文是RCS-YOLO我们只是用其中的RCS-OSA模块来替换我们YOLOv8中的C2f模块,但是在RCS-YOLO中还有一个RepVGG模块(大家在下面的代码中可以看到),这个模块可以替换Conv,但是如果都替换的话我觉得那就是RCS-YOLO了没啥区别了,所以我下面的改进和这篇文章只用了RCS-OSA模块来替换C2f,如果你对RCS-YOLO感兴趣的话,我后面也会提高RCS-YOLO的yaml文件供大家参考。

import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import math# build RepVGG block
# -----------------------------
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):result = nn.Sequential()result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,bias=False))result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))return resultclass SEBlock(nn.Module):def __init__(self, input_channels):super(SEBlock, self).__init__()internal_neurons = input_channels // 8self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,bias=True)self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,bias=True)self.input_channels = input_channelsdef forward(self, inputs):x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))x = self.down(x)x = F.relu(x)x = self.up(x)x = torch.sigmoid(x)x = x.view(-1, self.input_channels, 1, 1)return inputs * xclass RepVGG(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3,stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):super(RepVGG, self).__init__()self.deploy = deployself.groups = groupsself.in_channels = in_channelspadding_11 = padding - kernel_size // 2self.nonlinearity = nn.SiLU()# self.nonlinearity = nn.ReLU()if use_se:self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)else:self.se = nn.Identity()if deploy:self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride,padding=padding, dilation=dilation, groups=groups, bias=True,padding_mode=padding_mode)else:self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else Noneself.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride, padding=padding, groups=groups)self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,padding=padding_11, groups=groups)# print('RepVGG Block, identity = ', self.rbr_identity)def get_equivalent_kernel_bias(self):kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasiddef _pad_1x1_to_3x3_tensor(self, kernel1x1):if kernel1x1 is None:return 0else:return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])def _fuse_bn_tensor(self, branch):if branch is None:return 0, 0if isinstance(branch, nn.Sequential):kernel = branch.conv.weightrunning_mean = branch.bn.running_meanrunning_var = branch.bn.running_vargamma = branch.bn.weightbeta = branch.bn.biaseps = branch.bn.epselse:assert isinstance(branch, nn.BatchNorm2d)if not hasattr(self, 'id_tensor'):input_dim = self.in_channels // self.groupskernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)for i in range(self.in_channels):kernel_value[i, i % input_dim, 1, 1] = 1self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)kernel = self.id_tensorrunning_mean = branch.running_meanrunning_var = branch.running_vargamma = branch.weightbeta = branch.biaseps = branch.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta - running_mean * gamma / stddef forward(self, inputs):if hasattr(self, 'rbr_reparam'):return self.nonlinearity(self.se(self.rbr_reparam(inputs)))if self.rbr_identity is None:id_out = 0else:id_out = self.rbr_identity(inputs)return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))def fusevggforward(self, x):return self.nonlinearity(self.rbr_dense(x))# RepVGG block end
# -----------------------------class SR(nn.Module):# Shuffle RepVGGdef __init__(self, c1, c2):super().__init__()c1_ = int(c1 // 2)c2_ = int(c2 // 2)self.repconv = RepVGG(c1_, c2_)def forward(self, x):x1, x2 = x.chunk(2, dim=1)out = torch.cat((x1, self.repconv(x2)), dim=1)out = self.channel_shuffle(out, 2)return outdef channel_shuffle(self, x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groupsx = x.view(batchsize, groups, channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()x = x.view(batchsize, -1, height, width)return xdef make_divisible(x, divisor):# Returns nearest x divisible by divisorif isinstance(divisor, torch.Tensor):divisor = int(divisor.max())  # to intreturn math.ceil(x / divisor) * divisorclass RCSOSA(nn.Module):# VoVNet with Res Shuffle RepVGGdef __init__(self, c1, c2, n=1, se=False, e=0.5, stackrep=True):super().__init__()n_ = n // 2c_ = make_divisible(int(c1 * e), 8)# self.conv1 = Conv(c1, c_)self.conv1 = RepVGG(c1, c_)self.conv3 = RepVGG(int(c_ * 3), c2)self.sr1 = nn.Sequential(*[SR(c_, c_) for _ in range(n_)])self.sr2 = nn.Sequential(*[SR(c_, c_) for _ in range(n_)])self.se = Noneif se:self.se = SEBlock(c2)def forward(self, x):x1 = self.conv1(x)x2 = self.sr1(x1)x3 = self.sr2(x2)x = torch.cat((x1, x2, x3), 1)return self.conv3(x) if self.se is None else self.se(self.conv3(x))if __name__ == '__main__':m = RCSOSA(256, 256)im = torch.randn(2, 256, 13, 13)y = m(im)print(y.shape)


四、手把手教你添加RCS-OSA模块

4.1 RCS-OSA添加步骤

4.1.1 步骤一

首先我们找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个py文件,名字为RCSOSA即可,然后将RCS-OSA的核心代码复制进去。

4.1.2 步骤二

之后我们找到'ultralytics/nn/tasks.py'文件,在其中注册我们的RCS-OSA模块。

首先我们需要在文件的开头导入我们的RCS-OSA模块,如下图所示->

4.1.3 步骤三

我们找到parse_model这个方法,可以用搜索也可以自己手动找,大概在六百多行吧。 我们找到如下的地方,然后将RCS-OSA添加进去即可

到此我们就注册成功了,可以修改yaml文件中输入RCSOSA使用这个模块了。


4.2 RCS-OSA的yaml文件和训练截图

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可每一种都做实验,所以我下面推荐了几种我自己认为可能有效果的配合方式,你也可以自己进行组合。


4.2.1 RCS-OSA的yaml版本一(推荐)

下面的配置文件为我修改的RCS-OSA的位置(我的对比实验是用这个版本跑出来的)。

 此版本的GFLOPs大概涨到了24.4GFOPs,参数量为407120 parameters。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, RCSOSA, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, RCSOSA, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, RCSOSA, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, RCSOSA, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, RCSOSA, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, RCSOSA, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, RCSOSA, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, RCSOSA, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 RCS-OSA的yaml版本二

添加的版本二具体那种适合你需要大家自己多做实验来尝试。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, RCSOSA, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, RCSOSA, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, RCSOSA, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, RCSOSA, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 RCS-OSA的训练过程截图 

下面是添加了RCS-OSA的训练截图。

大家可以看下面的运行结果和添加的位置所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​​​​​


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/209449.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio APK打包指定包名

在最近写的一个案列中尝试用最新版的Android studio对项目进行打包测试,想要指定打包的包名这样便于区分的时候发现以前的许多方法都过时了,查了很多资料才弄明白each被抛弃了。本教程建议先看第三步。 目录 一、配置根目录下gradle.build 二、通过bui…

Billu_b0x

信息收集 #正常进行信息收集就好Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-18 22:07 CST Nmap scan report for 192.168.182.142 (192.168.182.142) Host is up (0.00073s latency).PORT STATE SERVICE 22/tcp open ssh 80/tcp open http | http-cookie-flags:…

VSC改造MD编辑器及图床方案分享

VSC改造MD编辑器及图床方案分享 用了那么多md编辑器,到头来还是觉得VSC最好用。这次就来分享一下我的blog文件编辑流吧。 这篇文章包括:VSC下md功能扩展插件推荐、图床方案、blog文章管理方案 VSC插件 Markdown All in One Markdown Image - 粘粘图片…

【电子通识】为什么电阻都是2.2、3.3、4.7、5.1这样的小数,而不是整数?

刚开始接触电路设计可能会对市面上已经有的电阻值如:2.2Ω、4.7Ω、5.1Ω、22Ω、47Ω、51Ω,通常都不是整数觉得非常困惑,所以查阅了一些资料,总结如下: 电阻是使用指数分布来设计生产的,即遵循国际电工委…

基于STM32 + DMA介绍,应用和步骤详解(ADC多通道)

前言 本篇博客主要学习了解DMA的工作原理和部分寄存器解析,针对ADC多通道来对代码部分,应用部分作详细讲解,掌握代码编程原理。本篇博客大部分是自己收集和整理,如有侵权请联系我删除。 本次博客开发板使用的是正点原子精英版&am…

23种策略模式之策略模式

文章目录 前言优缺点使用场景角色定义UML模拟示例小结 前言 在软件开发中,设计模式是为了解决常见问题而提供的一套可重用的解决方案。策略模式(Strategy Pattern)是其中一种常见的设计模式,它属于行为型模式。该模式的核心思想是…

Java程序设计实验6 | 集合类

*本文是博主对Java各种实验的再整理与详解,除了代码部分和解析部分,一些题目还增加了拓展部分(⭐)。拓展部分不是实验报告中原有的内容,而是博主本人自己的补充,以方便大家额外学习、参考。 (解…

基于ssm的大型商场会员管理系统论文

摘 要 进入信息时代以来,很多数据都需要配套软件协助处理,这样可以解决传统方式带来的管理困扰。比如耗时长,成本高,维护数据困难,数据易丢失等缺点。本次使用数据库工具MySQL和编程框架SSM开发的大型商场会员管理系统…

【漏洞复现】FLIR AX8红外线热成像仪命令执行漏洞

漏洞描述 eledyne FLIR 设计、开发、制造以及强大的传感和意识技术。自透射热图像、可见光图像、可见频率分析、来自测量和诊断的先进威胁测量系统以及日常生活的创新解决方案。 Teledyne FLIR 提供多种产品用于政府、国防、工业和商业市场。我们的产品,紧急救援人员,军事人…

插入排序与希尔排序(C语言实现)

1.插入排序 由上面的动图可以知道插入排序的逻辑就是从第一个元素开始往后遍历,如果找到比前一个元素小的(或者大的)就往前排,所以插入排序的每一次遍历都会保证前面的数据是有序的,接下类用代码进行讲解。 我们这里传…

智能优化算法应用:基于浣熊算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于浣熊算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于浣熊算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.浣熊算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

解决HTTP错误500.19 - internal server error -内部服务器错误的终极指南

在开发和维护网络应用程序时,难免会遇到各种HTTP错误代码。其中,HTTP错误500.19 - 内部服务器错误可谓是最令人头痛的问题之一。当你的应用程序遇到这个错误时,它似乎就像一道墙壁,挡住了你前进的道路。但别担心,本篇技…

react-photo-view 的介绍、安装、使用。

目录 基本介绍 安装 使用 基本介绍 react-photo-view 是一个基于 React 的图片查看器组件,用于在网页上展示和浏览图片。该组件提供了用户友好的界面和交互,可以轻松地在应用程序中集成并使用。 支持触摸手势,拖动/平移/物理效果滑动…

修改移远提供的GobiNet、quectel-CM源码,使其支持有方N720 4G模块

最近在研究imx6ull linux下4G模块驱动的移植,参考的移远ec20的移植方法,添加了GobiNet驱动,编译了quectel-CM工具,并且可以正常拨号,分配到ip,如下: ping外网也没有压力,如下…

【go-zero】go-zero使用ent框架 如何使用源生sql完成查询

背景 本篇教程我们采用的是go-zero的快速脚手架工具 simple-admin 框架的开发 github地址:https://github.com/suyuan32/simple-admin-core 因为框架推荐使用Ent 这篇教程我们则对Ent的基本使用的几种形式进行一个总结 一、开启ent的源生sql 1、simple-admin生成rpc 【go-…

RabbitMQ使用指南

介绍主要特点常用插件使用RabbitMQ的插件常用插件列表 应用场景Kafka与RabbitMq的区别主要优缺点安装步骤插件安装步骤 使用RabbitMqJava代码示例拓展 介绍 RabbitMQ是由Erlang语言开发的,基于AMQP(高级消息队列协议)协议实现的开源消息代理…

元宇宙红色展厅VR虚拟展馆提高受训者的参与感

生活在和平年代的新一代青少年,可能对革命先烈英勇事迹难以有很深的体会,无法切实感受到中国共产党无畏牺牲、誓死保家卫国的红色精神,因此借助VR虚拟现实制作技术,让参观者们走近革命先烈中,感受老一辈无产阶级革命家…

TrustZone之SMC异常

作为支持两个安全状态的一部分,该架构包括了Secure Monitor Call(SMC)指令。执行SMC会引发Secure Monitor Call异常,该异常目标是EL3。 通常,SMC用于请求服务,可以是来自驻留在EL3中的固件,也可…

微信小程序适配方案:rpx(responsive pixel响应式像素单位)

小程序适配单位:rpx 规定任何屏幕下宽度为750rpx 小程序会根据屏幕的宽度自动计算rpx值的大小 Iphone6下:1rpx 1物理像素 0.5css 小程序编译后,rpx会做一次px换算,换算是以375个物理像素为基准,也就是在一个宽度…

计算一组x和y(一维数组)

输入30个整数a1,a2,a3,…,a30,计算所有的x与y。已知: 输入格式: 30个整数 输出格式: 计算得到的x1, x2,.......,x10 计算得到的y1, y2,.......,y10 所有输出精确到小数点后3位。 注意: 1、输出的每个“”左右各有一个空格,输出…