论文笔记——Influence Maximization in Undirected Networks

Influence Maximization in Undirected Networks

  • Contribution
  • Motivation
  • Preliminaries
    • Notations
  • Main results
    • Reduction to Balanced Optimal Instances
    • Proving Theorem 3.1 for Balanced Optimal Instances

Contribution

好久没发paper笔记了,这篇比较偏理论,可能边看边记比较高效一些,仅作为个人笔记,如有解读不到的还请包涵。这篇paper的贡献有两个,首先是证明了在无向图中使用greedy可以突破 1 − 1 / e 1-1/e 11/e的barrier(也就是greedy在无向图上会更强),达到 1 − 1 / e + c 1-1/e+c 11/e+c的近似,其中 c c c为常数;其次,该论文证明了无向图上的influence maximization是 A P X − h a r d APX-hard APXhard

Motivation

作者先给了一个比较紧的例子:
在这里插入图片描述
这里蓝色为OPT(optimal,最优解),红色为 G R D GRD GRD(greedy算法选择的种子节点)。注意,有向图中greedy选择 v 1 , v 2 v_1,v_2 v1,v2是因为 v a l ( v 1 ) = v a l ( v 2 ) = v a l ( v 3 ) = 1 val(v_1)=val(v_2)=val(v_3)=1 val(v1)=val(v2)=val(v3)=1。然而在无向图中,情况会更不一样:
在这里插入图片描述
这里 v a l val val为节点的影响力,同样,这里 O P T = { v 2 , v 3 } OPT = \{v_2,v_3\} OPT={v2,v3}(因为 v 2 , v 3 v_2,v_3 v2,v3的权重大),这里依然有 v a l ( { v 2 , v 3 } ) = 2 val(\{v_2,v_3\})=2 val({v2,v3})=2。然而贪心算法会可能会选择 G R D = { v 1 , v 2 } GRD = \{v_1,v_2\} GRD={v1,v2},且有 v a l ( v 2 ) = v a l ( v 3 ) = 1 + 0 + 1 ∗ 1 / 2 ∗ 1 / 2 = 5 / 4 val(v_2) =val(v_3) = 1 + 0 + 1 * 1/2 * 1/2 = 5/4 val(v2)=val(v3)=1+0+11/21/2=5/4,那么根据Greedy的习惯, G R D = { v 2 , v 3 } GRD = \{v_2,v_3\} GRD={v2,v3},也就是说,在这个例子中,greedy会选出最优解
同样的结构,greedy在无向图和有向图上的表现却大相径庭,背后原因令人暖心:在无向图中,greedy选出的节点的影响力会和OPT的影响力重叠更少。然而这只是一个例子,不具备代表性,为了generalize这一现象,作者将使用 XYZ \textit{XYZ} XYZ lemma来构建反例(如下图)来说明在无向图中, k = 1 k=1 k=1时,greedy算法带来的近似比可以任意接近 3 / 4 3/4 3/4 k k k变大时,近似比则可以任意接近 1 − 1 / e 1-1/e 11/e
在这里插入图片描述
作者的整体思路分三步走:

  • Counter Example :首先构建worst case “balanced OPT”。在这个case中greedy算法的影响力函数 v a l ( . ) val(.) val(.)几乎是线性的,且每个OPT中的节点的影响力几乎是一样的。在这种情况下,greedy的近似比是 1 − 1 / e 1-1/e 11/e;除此之外,greedy的近似比都大于 1 − 1 / e 1-1/e 11/e
  • Linearity:在无向图中考虑 v a l ( . ) val(.) val(.)函数的线性情况。这里指的是,无向图中的OPT中的元素必须尽可能的不处在同一个连通分量中: v a l ( O P T ) − v a l ( O P T ∖ o i ) > v a l ( o i ) val(OPT) - val(OPT \setminus {o_i}) > val(o_i) val(OPT)val(OPToi)>val(oi),即节点 o i o_i oi的增益大于其本身的影响力。这对greedy有很大的影响。
  • Technical part:设 S S S O P T OPT OPT中前 k / 4 k/4 k/4个种子,考虑greedy选择剩余的种子的情况:作者证明了要么greedy会选择具有较大增益的点,达到 1 − 1 / e + c 1-1/e+c 11/e+c的近似;要么就是在balanced form情况下,OPT会导致矛盾。这里矛盾的点在于:在balance form时,greedy在选完前 4 / k 4/k 4/k个种子后,接着应该继续选具有最大增益的点(Lemma 4.2),否则就不会具有比 1 − 1 / e 1-1/e 11/e更好的近似比;换句话说,假设greedy不能提供更好的近似比,那么应该选出增益低的节点,但是由于 M ′ M' M(后续会讲到)中的节点是 5 ϵ 5\epsilon 5ϵ-uniform的,和 S S S在一个连通分量中的概率会很低,因此要选一个 O i ∈ M ′ O_i\in M' OiM具有低增益是不可能的,因为增益迪就说明 O i O_i Oi和S在同一个连通分量里面。证明的过程用到了一些technical的概率分析,描述了 XYZ \textit{XYZ} XYZ Lemma。

Preliminaries

Notations

notationsMeaning
< G ( V , E ) , U , p , w , k > <G(V,E),U,p,w,k> <G(V,E),U,p,w,k>An undirected graph
Ua valid seed set
p p phe probability in edges
w w wthe weight on node
k k kan integer
H ( V ′ , E ′ ) H(V',E') H(V,E)an live-edge graph of G G G
v a l ( S ∣ T ) val(S|T) val(ST) v a l ( S ∪ T ) − v a l ( T ) val(S \cup T) - val(T) val(ST)val(T)
S → T S \rightarrow T STsome vertices in S S S in the same component of T T T

此外,这里作者提供了一个加权图和无权图互相转化的方法。故文章中提到的图都是无权图。

Main results

在这里插入图片描述
这也是这篇paper的主要贡献,接下来是定理3.1的证明,也就是文章中具有technical的部分。首先构建lemma 3.1和lemma 3.2,这两个lemma想做的事情是说,当OPT不是特定的"balance"形式的时候,定理3.1是成立的。这里的“balance”其实就是worst case。

Reduction to Balanced Optimal Instances

首先定义了归一化影响力,具体定义如下。这个式子衡量了 X X X中节点的平均影响力和OPT中总体节点影响力的比值。 ρ ( x ) > 1 \rho(x) >1 ρ(x)>1说明 X X X中节点的平均影响力比OPT的节点平均影响力🐮。
在这里插入图片描述
给定 ϵ > 0 \epsilon > 0 ϵ>0,我们说一组节点 X X X ϵ \epsilon ϵ-uniform 的,若其每个不包含x节点的集合 X X X的元素的normalized influence浮动都很小,即 ( 1 − ϵ ) ≤ ρ ( x ∣ X ∖ x ) ≤ ( 1 + ϵ ) (1-\epsilon) \leq \rho(x \mid X \setminus {x}) \leq (1 + \epsilon) (1ϵ)ρ(xXx)(1+ϵ),那么该组节点的发挥就很稳定,称之为 ϵ \epsilon ϵ-uniform。
X X X ϵ \epsilon ϵ-independent的:若每个节点和X中其他节点出现在同一连通分量的概率 P r [ x → X { x } ] ≤ ϵ Pr[x \rightarrow X\ \{x\}] \leq \epsilon Pr[xX {x}]ϵ
X X X ϵ \epsilon ϵ-balanced:同时满足 ϵ \epsilon ϵ-uniform和 ϵ \epsilon ϵ-independent,也就是说这组节点即均匀分布,又发挥稳定( v a l ( . ) val(.) val(.)几乎是线性的)。
这个章节的目的是想说明对于这样的一个 ϵ > 0 \epsilon > 0 ϵ>0,greedy要么可以实现一个 1 − 1 / e + f ( ϵ ) 1-1/e+f(\epsilon) 11/e+f(ϵ)的近似,要么OPT就是 ϵ \epsilon ϵ-balanced。

在这里插入图片描述
Lemma 3.1说明了greedy算法严格保证了一个大于 1 − 1 / e 1-1/e 11/e的近似比。证明如下:

在这里插入图片描述

在这里插入图片描述
接下来的lemma说明,OPT一定满足下面两个条件之一:1、要么包含了一组 X X X,满足归一化后的X的影响力严格大于1且 v a l ( X ) = Ω ( v a l ( O P T ) ) val(X) = \Omega(val(OPT)) val(X)=Ω(val(OPT)),即 X X X的lower bound是 v a l ( O P T ) val(OPT) val(OPT);2、要么OPT可以根据条件划分为L,H,M。L的划分方法如下:
在这里插入图片描述
其实这里 L L L存放了一组点,满足 v a l ( L ) ≤ ϵ ⋅ v a l ( O P T ) val(L) \leq \epsilon \cdot val(OPT) val(L)ϵval(OPT),也就是将 o i o_i oi加入 Z Z Z(不包含 o i o_i oi)带来的收益小于 ( 1 − ϵ ) v a l ( O P T ) k \frac{(1-\epsilon)val(OPT)}{k} k(1ϵ)val(OPT)的那部分点,这些点至少会有 ϵ ⋅ k \epsilon \cdot k ϵk个。对于剩下的 k − ϵ ⋅ k k - \epsilon \cdot k kϵk个点,我们将它划分到 X X X中。
在这里插入图片描述
这样一来, ρ ( X ) > 1 \rho (X) >1 ρ(X)>1 v a l ( X ) = Ω ( v a l ( O P T ) ) val(X) = \Omega(val(OPT)) val(X)=Ω(val(OPT))

在这里插入图片描述

∣ L ∣ ≤ ϵ ⋅ k \mid L \mid \leq \epsilon \cdot k L∣≤ϵk,则不存在 X X X,那么继续划分。对于M和H,划分方法如下:
在这里插入图片描述
也就是说,在一个集合 Z = O 1 , . . . , O k Z = {O_1,...,O_k} Z=O1,...,Ok中,L是Z中一系列增益小于 ( 1 − ϵ ) v a l ( O P T ) k \frac{(1-\epsilon)val(OPT)}{k} k(1ϵ)val(OPT)的节点,那么对于Z中剩下的点,选出前 j j j个连续增益最大的点 { O δ ( 1 ) , . . . , O δ ( j ) } \{O_{\delta(1)},...,O_{\delta(j)}\} {Oδ(1),...,Oδ(j)},若这些点的影响力大于 ϵ 2 v a l ( O P T ) \epsilon^2val(OPT) ϵ2val(OPT),则将其划分为X;否则为 H H H,剩下的点为 M M M。这波操作下来, L , H , M L,H,M L,H,M中的点都不会有normalized influence大于1的情况,也就是说,greedy在这种情况下不会出现比 1 − 1 / e 1-1/e 11/e好的近似比。根据划分的方法,满足lemma3.2中的条件:M是 ϵ \epsilon ϵ-uniform的。
证明如下:
在这里插入图片描述

接下来肯定是证明 ϵ \epsilon ϵ-independent了。但这里只证明 M M M中的部分。对于M,有:
在这里插入图片描述
也就是说, M ′ M' M存在于 M M M中,且大小至少为 ∣ M ∣ − ϵ k \mid M\mid-\epsilon k Mϵk,且 M ′ M' M中每个点 O i O_i Oi M ′ M' M的连通分量中的概率最多为 5 ϵ 5\epsilon 5ϵ。这个证明暂且skip,没看懂。

Proving Theorem 3.1 for Balanced Optimal Instances

在这里插入图片描述

现在的情况是OPT被分成上面的样子了,这里 M ′ M' M满足 5 ϵ 5\epsilon 5ϵ-independent和 ϵ \epsilon ϵ-uniform。按照之前的证明思路,若是有一个集合满足 ϵ \epsilon ϵ-balanced,那么该集合上的 v a l ( . ) 就是几乎就是线性的。接下来的证明策略如下。首先证明,给定 val(.)就是几乎就是线性的。接下来的证明策略如下。首先证明,给定 val(.)就是几乎就是线性的。接下来的证明策略如下。首先证明,给定S = {g_1,g_2,…,g_{k/4}}$,如果贪婪算法没有达到比 1 − 1 / e 1−1/e 11/e更好的近似, 那么每个 O i ∈ M ′ O_i\in M' OiM的边际影响一定不能太大(lemma 3.4),否则就会有greedy超过 1 − 1 / e 1-1/e 11/e的情况发生。
在这里插入图片描述
在这里插入图片描述

Lemma3.4描述了greedy选完前 k / 4 k/4 k/4之后依然还能选出增益大于 4 / 5 v a l ( O P T ) k 4/5 \frac{val(OPT)}{k} 4/5kval(OPT)的情况。接下来的Lemma 3.5会考虑矛盾的情况:当 M ′ M' M中还存在更低的uniform集合。
在这里插入图片描述
L e m m a 3.4 Lemma 3.4 Lemma3.4 L e m m a 3.5 Lemma 3.5 Lemma3.5似乎是矛盾的,因为粗略地说,当 O i O_i Oi S S S在同一连通分量中的概率很大时,给定S,加入 O i O_i Oi的边际影响会很小。为了正式的说明这一点,我们必须为连通分量的大小和连接性事件之间的相关性建立界限;这个界限在XYZ引理(引理3.6)中被定义。
在这里插入图片描述

这里作者给出了两个定义:
在这里插入图片描述
对于一个点 j ∈ E i j \in E_i jEi,definition 1说 j j j对于 O i ∈ M ′ ′ O_i \in M'' OiM′′是"exclusive":当 j j j M ′ ′ M'' M′′ S S S的连通分量中,不在 H H H的连通分量中时, j j j被感染的概率依然小;
definition 2说 j j j对于 O i ∈ M ′ ′ O_i \in M'' OiM′′是"good":definition 2想说的是, M ′ ′ M'' M′′和S都影响j的概率并不比 M ′ ′ M'' M′′影响 j j j的概率小多少。

最后,将XYZ引理应用于 M ′ M' M和S,我们将证明, M ′ ′ M'' M′′中大部分的影响力都是由于 O i O_i Oi影响了一个"exclusive and good" j j j
在这里插入图片描述
到目前为止,我们集齐了所有的武器,接下来可以证明theorem 3.1了。

这里证明的思路大概如下:先假设theorem 3.1不成立,即 v a l ( G R D ) ≤ ( 1 − 1 / e + c ) v a l ( O P T ) val(GRD)\leq (1-1/e+c)val(OPT) val(GRD)(11/e+c)val(OPT),那么由lemma 3.1,3.2和3.3可将OPT分解为 L , M ′ , M ′ ′ , H L,M',M'',H L,M,M′′,H且满足lemma 3.5( ∣ M ′ ′ ∣ ≥ k / 3 a n d P r [ O i → S ] < 14 ϵ |M''| \geq k/3 and Pr[O_i \rightarrow S] < 14 \sqrt{\epsilon} M′′k/3andPr[OiS]<14ϵ for all O i ∈ M ′ ′ O_i \in M'' OiM′′)。通过随后的几个Lemma,作者证明了再这种情况下依然有 v a l ( S ) ≥ c 2 ⋅ 1 δ v a l ( O P T ) val(S) \geq c_2 \cdot \frac{1}{\delta}val(OPT) val(S)c2δ1val(OPT)(这里S是GRD的前k个种子, δ = 14 ϵ \delta = 14\sqrt{\epsilon} δ=14ϵ ),因此原结论成立。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytorch 中 view 和reshape的区别

在 PyTorch&#xff08;一个流行的深度学习框架&#xff09;中&#xff0c; reshape 和 view 都是用于改变张量&#xff08;tensor&#xff09;形状的方法&#xff0c;但它们在实现方式和使用上有一些区别。下面是它们之间的主要区别&#xff1a; 实现方式&#xff1a; reshap…

html学习7(iframe)

1、通过使用iframe标签定义框架&#xff0c;可在同一个浏览器中显示不止一个画面。 2、height和width属性用于定义框架的高度与宽度。 3、属性frameborder‘0’用于是否显示边框。 4、iframe可以显示一个目标链接的页面&#xff0c;链接的target属性设置为相应的iframe名称。…

2023年华数杯C题思路

c题 母亲身心健康对婴儿成长的影响 母亲是婴儿生命中最重要的人之一,她不仅为婴儿提供营养物质和身体保护,还为婴儿提供情感支持和安全感。母亲心理健康状态的不良状况&#xff0c;如抑郁、焦虑压力等&#xff0c;可能会对婴儿的认知、情感、社会行为等方面产生负面影响。压力…

2023年华数杯C题详细思路

2023年华数杯作为与国赛同频的比赛&#xff08;都是周四6点发题&#xff0c;周日晚8点交卷&#xff09;&#xff0c;也是暑期唯一一个正式比赛。今年的报名队伍已经高达6000多对。基于这么多的人数进行国赛前队伍的练习&#xff0c;以及其他用途。为了方便大家跟更好的选题&…

机器学习03-数据理解(小白快速理解分析Pima Indians数据集)

机器学习数据理解是指对数据集进行详细的分析和探索&#xff0c;以了解数据的结构、特征、分布和质量。数据理解是进行机器学习项目的重要第一步&#xff0c;它有助于我们对数据的基本属性有全面的了解&#xff0c;并为后续的数据预处理、特征工程和模型选择提供指导。 数据理解…

vue 图片回显标签

第一种 <el-form-item label"打款银行回单"><image-preview :src"form.bankreceiptUrl" :width"120" :height"120"/></el-form-item>// 值为 https://t11.baidu.com/it/app106&fJPEG&fm30&fmtauto&…

SpringBoot整合Caffeine

一、Caffeine介绍 1、缓存介绍 缓存(Cache)在代码世界中无处不在。从底层的CPU多级缓存&#xff0c;到客户端的页面缓存&#xff0c;处处都存在着缓存的身影。缓存从本质上来说&#xff0c;是一种空间换时间的手段&#xff0c;通过对数据进行一定的空间安排&#xff0c;使得下…

如何使用免费敏捷工具Leangoo领歌管理Sprint Backlog

什么是Sprint Backlog&#xff1f; Sprint Backlog是Scrum的主要工件之一。在Scrum中&#xff0c;团队按照迭代的方式工作&#xff0c;每个迭代称为一个Sprint。在Sprint开始之前&#xff0c;PO会准备好产品Backlog&#xff0c;准备好的产品Backlog应该是经过梳理、估算和优先…

JVM调优工具详解以及实战

准备 事先启动一个web应用程序&#xff0c;用jps查看进程id&#xff0c;接着用各种jdk自带的命令优化应用 Jmap jmap -histo 6160 #查看历史生成的实例 jmap -histo:live 6160 #查看当前存活的实例&#xff0c;执行过程中可能会触发一次full gc jmap -histo:live 6160 &…

Chapter 11: Tuples | Python for Everybody 讲义笔记_En

文章目录 Python for Everybody课程简介TuplesTuples are immutableComparing tuplesTuple assignmentDictionaries and tuplesMultiple assignment with dictionariesThe most common wordsUsing tuples as keys in dictionariesSequences: strings, lists, and tuples - Oh M…

FTP文件传输协议

FTP文件传输协议 介绍 将某台计算机中的文件通过网络传送到可能相距很远的另一台计算机中&#xff0c;是一项基本的网络应用&#xff0c;即文件传送文件传输协议(File Transfer Protocol)是因特网上使用得最广泛的文件传输协议 FTP提供交互式访问&#xff0c;允许客户指明文件…

frida学习及使用

文章目录 安装frida安装python3.7设置环境变量安装pycharm和nodejs 使用frida将frida-server push到手机设备中端口转发安装apk使用jadx查看java代码运行frida-server frida源码阅读frida hook方法Frida Java层hoookJavaHook.javaJavaHook.js Frida native层hook 一NativeHook.…

YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)

YOLOv5&#xff1a;使用7.0版本训练自己的实例分割模型&#xff08;车辆、行人、路标、车道线等实例分割&#xff09; 前言前提条件相关介绍使用YOLOv5-7.0版本训练自己的实例分割模型YOLOv5项目官方源地址下载yolov5-7.0版源码解压目录结构 准备实例分割数据集在./data目录下&…

xlrd与xlwt操作Excel文件详解

Python操作Excel的模块有很多&#xff0c;并且各有优劣&#xff0c;不同模块支持的操作和文件类型也有不同。下面是各个模块的支持情况&#xff1a; .xls.xlsx获取文件内容写入数据修改文件内容保存样式调整插入图片xlrd√√√xlwt√√√√√xlutils√√√√xlwings√√√√√…

【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码、数据、讲解 &#x1f4a5;1 概述 由于能源的日益匮乏&#xff0c;电力需求的不断增长等&#xff0c;配电网中分布式能源渗透率不断提高&#xff0c;且逐渐向主动配电网方…

《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(15)-Fiddler弱网测试,知否知否,应是必知必会

1.简介 现在这个时代已经属于流量时代&#xff0c;用户对于App或者小程序之类的操作界面的数据和交互的要求也越来越高。对于测试人员弱网测试也是需要考验自己专业技术能力的一种技能。一个合格的测试人员&#xff0c;需要额外关注的场景就远不止断网、网络故障等情况了。还要…

BI报表工具有哪些作用?奥威BI全面剖析数据

BI报表工具有哪些作用&#xff1f;主要的作用是通过整合多业务来源数据&#xff0c;全面分析挖掘数据&#xff0c;来帮助企业实现数据化运营、支持智能决策、实现数据资产沉淀和增值、进行数据挖掘和预测分析、提高数据可读性和数据可视化程度等&#xff0c;从而提高企业的竞争…

51单片机学习--蜂鸣器播放音乐

由原理图可知&#xff0c;蜂鸣器BEEP与P1_5 相关&#xff0c;但其实这个原理图有错&#xff0c;实测接的是P2_5 下面这个代码就是以500HZ的频率响500ms的例子 sbit Buzzer P2^5;unsigned char KeyNum; unsigned int i;void main() {while(1){KeyNum Key();if(KeyNum){for(i …

1.初识typescript

在很多地方的示例代码中使用的都是ts而不是js&#xff0c;为了使用那些示例&#xff0c;学习ts还是有必要的 JS有的TS都有&#xff0c;JS与TS的关系很像css与less ts在运行前需要先编译为js&#xff0c;浏览器不能直接运行ts 目录 1 编译TS的工具包 1.1 安装 1.2 基本…

iphone备份用什么软件?好用的苹果数据备份工具推荐!

众所周知&#xff0c;如果要将iPhone的数据跟电脑进行传输备份的话&#xff0c;我们需要用到iTunes这个pc工具。但是对于iTunes&#xff0c;不少人都反映这个软件比较难用&#xff0c;用不习惯。于是&#xff0c;顺应时代命运的iPhone备份同步工具就出现了。那iphone备份用什么…