好莱坞明星识别

 一、前期工作


1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpus


如果使用的是CPU可以忽略这步



2. 导入数据

data_dir = "./46-data/"data_dir = pathlib.Path(data_dir)




3. 查看数据

 

image_count = len(list(data_dir.glob('*/*/*.jpg')))print("图片总数为:",image_count)


 

图片总数为: 578
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

YAIRI

output_11_0.png



二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
●tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。


测试集与验证集的关系:

1验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
2但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
3因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

batch_size = 32
img_height = 224
img_width = 224



如果准备尝试 categorical_crossentropy损失函数,下面的代码遇到变动哈,变动细节将在下一周博客内公布。
 

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory("./46-data/train/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

Found 502 files belonging to 2 classes.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory("./46-data/test/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 76 files belonging to 2 classes.




我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
 

class_names = train_ds.class_names
print(class_names)
['adidas', 'nike']



2. 可视化数据

 

plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

output_22_0.png



3. 再次检查数据

 

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 224, 224, 3)
(32,)


●Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
●Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

●shuffle() :打乱数据,关于此函数的详细介绍可以参考:数据集shuffle方法中buffer_size的理解 - 知乎
●prefetch() :预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

image.png


使用prefetch()可显著减少空闲时间:

image.png


●cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)



三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

网络结构图(可单击放大查看):

image.png

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样layers.Dropout(0.3),  layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.3),  layers.Flatten(),                       # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取layers.Dense(len(class_names))               # 输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling (Rescaling)        (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d (Conv2D)              (None, 222, 222, 16)      448       
_________________________________________________________________
average_pooling2d (AveragePo (None, 111, 111, 16)      0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 109, 109, 32)      4640      
_________________________________________________________________
average_pooling2d_1 (Average (None, 54, 54, 32)        0         
_________________________________________________________________
dropout (Dropout)            (None, 54, 54, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 52, 52, 64)        18496     
_________________________________________________________________
dropout_1 (Dropout)          (None, 52, 52, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 173056)            0         
_________________________________________________________________
dense (Dense)                (None, 128)               22151296  
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 258       
=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________




四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

●损失函数(loss):用于衡量模型在训练期间的准确率。
●优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
●指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:
●initial_learning_rate(初始学习率):初始学习率大小。
●decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
●decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
●staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。

# 设置初始学习率
initial_learning_rate = 0.1lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(optimizer=optimizer,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])



注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大

● 优点:
○1、加快学习速率。
○2、有助于跳出局部最优值。
● 缺点:
○1、导致模型训练不收敛。
○2、单单使用大学习率容易导致模型不精确。

学习率小

● 优点:
○1、有助于模型收敛、模型细化。
○2、提高模型精度。
● 缺点:
○1、很难跳出局部最优值。
○2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明:

●monitor: 被监测的数据。
●min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
●patience: 没有进步的训练轮数,在这之后训练就会被停止。
●verbose: 详细信息模式。
●mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
●baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
●estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStoppingepochs = 50# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', min_delta=0.001,patience=20, verbose=1)



3. 模型训练
 

history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper])
Epoch 1/50
16/16 [==============================] - 4s 31ms/step - loss: 3.5439 - accuracy: 0.4721 - val_loss: 0.6931 - val_accuracy: 0.5789Epoch 00001: val_accuracy improved from -inf to 0.57895, saving model to best_model.h5
Epoch 2/50
16/16 [==============================] - 0s 12ms/step - loss: 0.6929 - accuracy: 0.5279 - val_loss: 0.6891 - val_accuracy: 0.6447......Epoch 00040: val_accuracy did not improve from 0.89474
Epoch 41/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0931 - accuracy: 0.9841 - val_loss: 0.3837 - val_accuracy: 0.8816Epoch 00041: val_accuracy did not improve from 0.89474
Epoch 42/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0871 - accuracy: 0.9801 - val_loss: 0.3834 - val_accuracy: 0.8816Epoch 00042: val_accuracy did not improve from 0.89474
Epoch 00042: early stopping



五、模型评估

1. Loss与Accuracy图
 

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(len(loss))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

output_51_0.png


2. 指定图片进行预测
 

from PIL import Image
import numpy as np# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("./46-data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

预测结果为: nike

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/208268.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态规划——完全背包问题(公式推导,组合、排列)

本文章是对于完全背包 一些题型(如题目所示,组合、排列和最小值类型)的总结和理解,依次记录一下,方便回顾与复习。 本文章是基于个人所总结 实现的,但在其中遇到了一些疑惑与困难,所以总结一篇与完全背包相关的问题。 …

Spring基于注解开发

Component的使用 基本Bean注解&#xff0c;主要是使用注解的方式替代原有的xml的<bean>标签及其标签属性的配置&#xff0c;使用Component注解替代<bean>标签中的id以及class属性&#xff0c;而对于是否延迟加载或是Bean的作用域&#xff0c;则是其他注解 xml配置…

四招打造完美分层自动化测试框架,让测试更高效!

写在前面 我们刚开始做自动化测试&#xff0c;可能写的代码都是基于原生写的代码&#xff0c;看起来特别不美观&#xff0c;而且感觉特别生硬。 来看下面一段代码&#xff1a; 具体表现如下&#xff1a; driver对象在测试类中显示 定位元素的value值在测试类中显示 定位元素…

Navicat 技术指引 | 适用于 GaussDB 分布式的用户/权限功能

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…

干货:软文推广中的关键词类别有哪些?

软文推广如果想要增加文案曝光率&#xff0c;seo是其主要的传播方式之一&#xff0c;因而好的关键词十分重要&#xff0c;这里的关键词指得是针对搜索引擎而言&#xff0c;由用户输入搜索引擎框中的提示性文字&#xff0c;只要关键词设置得好&#xff0c;软文就能通过搜索引擎精…

因为 postman环境变量全局变量设置好兄弟被公司优化了!

postman环境变量、全局变量设置 在公司中&#xff0c;一般会存在开发环境、测试环境、线上环境等&#xff0c;如果需要在不 同的环境下切换做接口测试&#xff0c;显然我们需要把所有接口的域名进行修改&#xff0c;如果接 口测试用例较多&#xff0c;那么修改会非常费力&…

Python与ArcGIS系列(十五)根据距离抓取字段

目录 0 简述1 实例需求2 arcpy开发脚本0 简述 在处理gis数据的时候,会遇到这种需求:将一个图层与另一个图层中相近的要素进行字段赋值。本篇将介绍如何利用arcpy及arcgis的工具箱实现这个功能。 1 实例需求 为了介绍这个功能的实现,我们需要有一个特定的功能需求。在这里选…

L1-019:谁先倒

题目描述 划拳是古老中国酒文化的一个有趣的组成部分。酒桌上两人划拳的方法为&#xff1a;每人口中喊出一个数字&#xff0c;同时用手比划出一个数字。如果谁比划出的数字正好等于两人喊出的数字之和&#xff0c;谁就输了&#xff0c;输家罚一杯酒。两人同赢或两人同输则继续下…

Axure网页端高复用组件库, 下拉菜单文件上传穿梭框日期城市选择器

作品说明 组件数量&#xff1a;共 11 套 兼容软件&#xff1a;Axure RP 9/10&#xff0c;不支持低版本 应用领域&#xff1a;web端原型设计、桌面端原型设计 作品特色 本作品为「web端组件库」&#xff0c;高保真高交互 (带仿真功能效果)&#xff1b;运用了动态面板、中继…

使用pytorch查看中间层特征矩阵以及卷积核参数

这篇是我对哔哩哔哩up主 霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享 1和4是之前讲过的alexnet和resnet模型 2是分析中间层特征矩阵的脚本 3是查看卷积核参数的脚本 1设置预处理方法 和图像训练的时候用的预处理方法保持一致 2实例化模型 3载入之前的模型参数 4载入…

Pandas操作数据库

一&#xff1a;Pandas读取数据库数据 二&#xff1a;Pandas读取海量数据 三&#xff1a;Pandas向数据库存数据 四&#xff1a;Pandas写入海量数据

上海宝山区12月8日发生一起火灾 火势已扑灭 揭秘AI如何“救援”

在这个冬日的早晨&#xff0c;上海宝山区的居民经历了一场惊心动魄的火灾。幸运的是&#xff0c;火势很快就被扑灭了。但这起事件不禁让我们思考&#xff1a;如何更有效地预防和应对这样的紧急情况&#xff1f; 这时候&#xff0c;就不得不提到北京富维图像公司的一项创新技术—…

我的隐私计算学习——国密SM2和国密SM4算法

此篇是我笔记目录里的安全保护技术&#xff08;七&#xff09;&#xff0c;前篇可见&#xff1a; 隐私计算安全保护技术&#xff08;一&#xff09;&#xff1a;我的隐私计算学习——混淆电路-CSDN博客 隐私计算安全保护技术&#xff08;二&#xff09;&#xff1a;我的隐私计…

当下流行视频剪辑软件会声会影2024,让你的视频制作更精彩

大家好呀&#xff01;今天小编给大家介绍一款超赞的视频编辑软件——会声会影2024&#xff01; 当下流行视频剪辑软件会声会影2024&#xff0c;让你的视频制作更精彩&#xff0c;会声会影2024不仅提供了各种酷炫的特效和滤镜&#xff0c;还有更多令人惊叹的功能等待着你的发掘…

【STM32】蓝牙氛围灯

Docs 一、项目搭建和开发流程 一、项目需求和产品定义 1.需求梳理和产品定义 一般由甲方公司提出&#xff0c;或由本公司市场部提出 需求的重点是&#xff1a;这个产品究竟应该做成什么样&#xff1f;有哪些功能&#xff1f;具体要求和参数怎样&#xff1f;此外还要考虑售价…

[Python从零到壹] 七十三.图像识别及经典案例篇之图像去雾ACE算法和暗通道先验去雾算法实现

十月太忙&#xff0c;还是写一篇吧&#xff01;祝大家1024节日快乐O(∩_∩)O 欢迎大家来到“Python从零到壹”&#xff0c;在这里我将分享约200篇Python系列文章&#xff0c;带大家一起去学习和玩耍&#xff0c;看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经…

更多内窥镜维修技能学习与交流可关注西安彩虹

内窥镜结构及光学成像原理 众多品牌的硬镜其内部结构基本相似&#xff08;如下图&#xff09;&#xff0c;最关键的在于不同用途的硬镜在其结构上发生变化&#xff0c;包括光学成像系统和机械结构。光学成像系统由物镜系统、转像系统、目镜系统三大系统组成。 工作原理 被观察…

MySQL中是如何insert数据的

正常insert数据&#xff0c;MySQL并不会显式加锁&#xff0c;而是通过聚簇索引的trx_id索引作为隐式锁来保护记录的。比如两个事务对一个非唯一的索引情况添加&#xff0c;会造成幻读 但在某些特殊情况下&#xff0c;隐式锁会转变为显式锁&#xff1a; 记录之间有间隙锁inser…

二叉树的非递归遍历(详解)

二叉树非递归遍历原理 使用先序遍历的方式完成该二叉树的非递归遍历 通过添加现有项目的方式将原来编写好的栈文件导入项目中 目前项目存在三个文件一个头文件&#xff0c;两个cpp文件&#xff1a; 项目头文件的代码截图&#xff1a;QueueStorage.h 项目头文件的代码&#xff…

如何运用gpt改写出高质量的文章 (1)

大家好&#xff0c;今天来聊聊如何运用gpt改写出高质量的文章 (1)&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff1a; 如何运用GPT改写出高质量的文章 一、引言 随着人工智能技术的飞速发展&#xff0c;自然…