1 文本格式
#include<iostream>
using namespace std;
// A BTree node
class BTreeNode
{
int* keys; // An array of keys
int t; // Minimum degree (defines the range for number of keys)
BTreeNode** C; // An array of child pointers
int n; // Current number of keys
bool leaf; // Is true when node is leaf. Otherwise false
public:
BTreeNode(int _t, bool _leaf); // Constructor
// A utility function to insert a new key in the subtree rooted with
// this node. The assumption is, the node must be non-full when this
// function is called
void insertNonFull(int k);
// A utility function to split the child y of this node. i is index of y in
// child array C[]. The Child y must be full when this function is called
void splitChild(int i, BTreeNode* y);
// A function to traverse all nodes in a subtree rooted with this node
void traverse();
// A function to search a key in the subtree rooted with this node.
BTreeNode* search(int k); // returns NULL if k is not present.
// Make BTree friend of this so that we can access private members of this
// class in BTree functions
friend class BTree;
};
// A BTree
class BTree
{
BTreeNode* root; // Pointer to root node
int t; // Minimum degree
public:
// Constructor (Initializes tree as empty)
BTree(int _t)
{
root = NULL; t = _t;
}
// function to traverse the tree
void traverse()
{
if (root != NULL) root->traverse();
}
// function to search a key in this tree
BTreeNode* search(int k)
{
return (root == NULL) ? NULL : root->search(k);
}
// The main function that inserts a new key in this B-Tree
void insert(int k);
};
// Constructor for BTreeNode class
BTreeNode::BTreeNode(int t1, bool leaf1)
{
// Copy the given minimum degree and leaf property
t = t1;
leaf = leaf1;
// Allocate memory for maximum number of possible keys
// and child pointers
keys = new int[2 * t - 1];
C = new BTreeNode * [2 * t];
// Initialize the number of keys as 0
n = 0;
}
// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
// There are n keys and n+1 children, traverse through n keys
// and first n children
int i;
for (i = 0; i < n; i++)
{
// If this is not leaf, then before printing key[i],
// traverse the subtree rooted with child C[i].
if (leaf == false)
C[i]->traverse();
cout << " " << keys[i];
}
// Print the subtree rooted with last child
if (leaf == false)
C[i]->traverse();
}
// Function to search key k in subtree rooted with this node
BTreeNode* BTreeNode::search(int k)
{
// Find the first key greater than or equal to k
int i = 0;
while (i < n && k > keys[i])
i++;
// If the found key is equal to k, return this node
if (keys[i] == k)
return this;
// If key is not found here and this is a leaf node
if (leaf == true)
return NULL;
// Go to the appropriate child
return C[i]->search(k);
}
// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
// If tree is empty
if (root == NULL)
{
// Allocate memory for root
root = new BTreeNode(t, true);
root->keys[0] = k; // Insert key
root->n = 1; // Update number of keys in root
}
else // If tree is not empty
{
// If root is full, then tree grows in height
if (root->n == 2 * t - 1)
{
// Allocate memory for new root
BTreeNode* s = new BTreeNode(t, false);
// Make old root as child of new root
s->C[0] = root;
// Split the old root and move 1 key to the new root
s->splitChild(0, root);
// New root has two children now. Decide which of the
// two children is going to have new key
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k);
// Change root
root = s;
}
else // If root is not full, call insertNonFull for root
root->insertNonFull(k);
}
}
// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
// Initialize index as index of rightmost element
int i = n - 1;
// If this is a leaf node
if (leaf == true)
{
// The following loop does two things
// a) Finds the location of new key to be inserted
// b) Moves all greater keys to one place ahead
while (i >= 0 && keys[i] > k)
{
keys[i + 1] = keys[i];
i--;
}
// Insert the new key at found location
keys[i + 1] = k;
n = n + 1;
}
else // If this node is not leaf
{
// Find the child which is going to have the new key
while (i >= 0 && keys[i] > k)
i--;
// See if the found child is full
if (C[i + 1]->n == 2 * t - 1)
{
// If the child is full, then split it
splitChild(i + 1, C[i + 1]);
// After split, the middle key of C[i] goes up and
// C[i] is splitted into two. See which of the two
// is going to have the new key
if (keys[i + 1] < k)
i++;
}
C[i + 1]->insertNonFull(k);
}
}
// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode* y)
{
// Create a new node which is going to store (t-1) keys
// of y
BTreeNode* z = new BTreeNode(y->t, y->leaf);
z->n = t - 1;
// Copy the last (t-1) keys of y to z
for (int j = 0; j < t - 1; j++)
z->keys[j] = y->keys[j + t];
// Copy the last t children of y to z
if (y->leaf == false)
{
for (int j = 0; j < t; j++)
z->C[j] = y->C[j + t];
}
// Reduce the number of keys in y
y->n = t - 1;
// Since this node is going to have a new child,
// create space of new child
for (int j = n; j >= i + 1; j--)
C[j + 1] = C[j];
// Link the new child to this node
C[i + 1] = z;
// A key of y will move to this node. Find the location of
// new key and move all greater keys one space ahead
for (int j = n - 1; j >= i; j--)
keys[j + 1] = keys[j];
// Copy the middle key of y to this node
keys[i] = y->keys[t - 1];
// Increment count of keys in this node
n = n + 1;
}
// Driver program to test above functions
int main()
{
BTree t(3); // A B-Tree with minimum degree 3
t.insert(10);
t.insert(20);
t.insert(5);
t.insert(6);
t.insert(12);
t.insert(30);
t.insert(7);
t.insert(17);
cout << "Traversal of the constructed tree is ";
t.traverse();
int k = 6;
(t.search(k) != NULL) ? cout << "\nPresent" : cout << "\nNot Present";
k = 15;
(t.search(k) != NULL) ? cout << "\nPresent" : cout << "\nNot Present";
return 0;
}
2 代码格式
#include<iostream>
using namespace std;// A BTree node
class BTreeNode
{int* keys; // An array of keysint t; // Minimum degree (defines the range for number of keys)BTreeNode** C; // An array of child pointersint n; // Current number of keysbool leaf; // Is true when node is leaf. Otherwise false
public:BTreeNode(int _t, bool _leaf); // Constructor// A utility function to insert a new key in the subtree rooted with// this node. The assumption is, the node must be non-full when this// function is calledvoid insertNonFull(int k);// A utility function to split the child y of this node. i is index of y in// child array C[]. The Child y must be full when this function is calledvoid splitChild(int i, BTreeNode* y);// A function to traverse all nodes in a subtree rooted with this nodevoid traverse();// A function to search a key in the subtree rooted with this node.BTreeNode* search(int k); // returns NULL if k is not present.// Make BTree friend of this so that we can access private members of this// class in BTree functionsfriend class BTree;
};// A BTree
class BTree
{BTreeNode* root; // Pointer to root nodeint t; // Minimum degree
public:// Constructor (Initializes tree as empty)BTree(int _t){root = NULL; t = _t;}// function to traverse the treevoid traverse(){if (root != NULL) root->traverse();}// function to search a key in this treeBTreeNode* search(int k){return (root == NULL) ? NULL : root->search(k);}// The main function that inserts a new key in this B-Treevoid insert(int k);
};// Constructor for BTreeNode class
BTreeNode::BTreeNode(int t1, bool leaf1)
{// Copy the given minimum degree and leaf propertyt = t1;leaf = leaf1;// Allocate memory for maximum number of possible keys// and child pointerskeys = new int[2 * t - 1];C = new BTreeNode * [2 * t];// Initialize the number of keys as 0n = 0;
}// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{// There are n keys and n+1 children, traverse through n keys// and first n childrenint i;for (i = 0; i < n; i++){// If this is not leaf, then before printing key[i],// traverse the subtree rooted with child C[i].if (leaf == false)C[i]->traverse();cout << " " << keys[i];}// Print the subtree rooted with last childif (leaf == false)C[i]->traverse();
}// Function to search key k in subtree rooted with this node
BTreeNode* BTreeNode::search(int k)
{// Find the first key greater than or equal to kint i = 0;while (i < n && k > keys[i])i++;// If the found key is equal to k, return this nodeif (keys[i] == k)return this;// If key is not found here and this is a leaf nodeif (leaf == true)return NULL;// Go to the appropriate childreturn C[i]->search(k);
}// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{// If tree is emptyif (root == NULL){// Allocate memory for rootroot = new BTreeNode(t, true);root->keys[0] = k; // Insert keyroot->n = 1; // Update number of keys in root}else // If tree is not empty{// If root is full, then tree grows in heightif (root->n == 2 * t - 1){// Allocate memory for new rootBTreeNode* s = new BTreeNode(t, false);// Make old root as child of new roots->C[0] = root;// Split the old root and move 1 key to the new roots->splitChild(0, root);// New root has two children now. Decide which of the// two children is going to have new keyint i = 0;if (s->keys[0] < k)i++;s->C[i]->insertNonFull(k);// Change rootroot = s;}else // If root is not full, call insertNonFull for rootroot->insertNonFull(k);}
}// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{// Initialize index as index of rightmost elementint i = n - 1;// If this is a leaf nodeif (leaf == true){// The following loop does two things// a) Finds the location of new key to be inserted// b) Moves all greater keys to one place aheadwhile (i >= 0 && keys[i] > k){keys[i + 1] = keys[i];i--;}// Insert the new key at found locationkeys[i + 1] = k;n = n + 1;}else // If this node is not leaf{// Find the child which is going to have the new keywhile (i >= 0 && keys[i] > k)i--;// See if the found child is fullif (C[i + 1]->n == 2 * t - 1){// If the child is full, then split itsplitChild(i + 1, C[i + 1]);// After split, the middle key of C[i] goes up and// C[i] is splitted into two. See which of the two// is going to have the new keyif (keys[i + 1] < k)i++;}C[i + 1]->insertNonFull(k);}
}// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode* y)
{// Create a new node which is going to store (t-1) keys// of yBTreeNode* z = new BTreeNode(y->t, y->leaf);z->n = t - 1;// Copy the last (t-1) keys of y to zfor (int j = 0; j < t - 1; j++)z->keys[j] = y->keys[j + t];// Copy the last t children of y to zif (y->leaf == false){for (int j = 0; j < t; j++)z->C[j] = y->C[j + t];}// Reduce the number of keys in yy->n = t - 1;// Since this node is going to have a new child,// create space of new childfor (int j = n; j >= i + 1; j--)C[j + 1] = C[j];// Link the new child to this nodeC[i + 1] = z;// A key of y will move to this node. Find the location of// new key and move all greater keys one space aheadfor (int j = n - 1; j >= i; j--)keys[j + 1] = keys[j];// Copy the middle key of y to this nodekeys[i] = y->keys[t - 1];// Increment count of keys in this noden = n + 1;
}// Driver program to test above functions
int main()
{BTree t(3); // A B-Tree with minimum degree 3t.insert(10);t.insert(20);t.insert(5);t.insert(6);t.insert(12);t.insert(30);t.insert(7);t.insert(17);cout << "Traversal of the constructed tree is ";t.traverse();int k = 6;(t.search(k) != NULL) ? cout << "\nPresent" : cout << "\nNot Present";k = 15;(t.search(k) != NULL) ? cout << "\nPresent" : cout << "\nNot Present";return 0;
}