机器学习实战:预测波士顿房价

前言: Hello大家好,我是Dream。 今天来学习一下机器学习中一个非常经典的案例:预测波士顿房价,在此过程中也会补充很多重要的知识点,欢迎大家一起前来探讨学习~

一、导入数据

在这个项目中,我们利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试。此项目的数据集来自UCI机器学习知识库。波士顿房屋这些数据于1978年开始统计,共506个数据点,涵盖了麻省波士顿不同郊区房屋14种特征的信息。
通过该数据训练后的好的模型可以被用来对房屋做特定预测—尤其是对房屋的价值。对于房地产经纪等人的日常工作来说,这样的预测模型被证明非常有价值。
本项目对原始数据集做了以下处理:

  • 有16个'MEDV' 值为50.0的数据点被移除。 这很可能是由于这些数据点包含遗失看不到的值
  • 有1个数据点的 'RM' 值为8.78. 这是一个异常值,已经被移除。
  • 对于本项目,房屋的'RM''LSTAT''PTRATIO'以及'MEDV'特征是必要的,其余不相关特征已经被移除。
  • 'MEDV'特征的值已经过必要的数学转换,可以反映35年来市场的通货膨胀效应。
import numpy as np
import pandas as pd
from sklearn.model_selection import ShuffleSplit
import visuals as vs
%matplotlib inline# Load the Boston housing dataset
data = pd.read_csv('housing.csv')
prices = data['MEDV']
features = data.drop('MEDV', axis = 1)
data.head(5)

二、分析数据

在项目的第一个部分,会对波士顿房地产数据进行初步的观察,通过对数据的探索来熟悉数据可以让你更好地理解和解释你的结果。

由于这个项目的最终目标是建立一个预测房屋价值的模型,我们需要将数据集分为特征(features)目标变量(target variable)

  • 特征 'RM''LSTAT',和 'PTRATIO',给我们提供了每个数据点的数量相关的信息。
  • 目标变量 'MEDV',是我们希望预测的变量。

他们分别被存在 featuresprices 两个变量名中。

基础统计运算

  • 计算 prices 中的 'MEDV' 的最小值、最大值、均值、中值和标准差;
  • 将运算结果储存在相应的变量中。
# TODO: Minimum price of the data
minimum_price = np.min(prices)# TODO: Maximum price of the data
maximum_price = np.max(prices)# TODO: Mean price of the data
mean_price =np.mean(prices)# TODO: Median price of the data
median_price = np.median(prices)# TODO: Standard deviation of prices of the data
std_price = np.std(prices)# Show the calculated statistics
print("Statistics for Boston housing dataset:\n")
print("Minimum price: ${:.2f}".format(minimum_price)) 
print("Maximum price: ${:.2f}".format(maximum_price))
print("Mean price: ${:.2f}".format(mean_price))
print("Median price ${:.2f}".format(median_price))
print("Standard deviation of prices: ${:.2f}".format(std_price))

在这里插入图片描述

特征观察

如前文所述,本项目中我们关注的是其中三个值:'RM''LSTAT''PTRATIO',对每一个数据点:

  • 'RM' 是该地区中每个房屋的平均房间数量;
  • 'LSTAT' 是指该地区有多少百分比的业主属于是低收入阶层(有工作但收入微薄);
  • 'PTRATIO' 是该地区的中学和小学里,学生和老师的数目比(学生/老师)。

凭直觉,上述三个特征中对每一个来说,你认为增大该特征的数值,'MEDV'的值会是增大还是减小呢?

‘1’: ‘RM’ 是该地区中每个房屋的平均房间数量:

  • ‘回答:’ 'RM’增加,意味着房子的总面积会增加,所以价值会更高。

‘2’: ‘LSTAT’ 是指该地区有多少百分比的业主属于是低收入阶层(有工作但收入微薄);_

  • ‘回答:’ 'LSTAT’占比增加,低收入阶层增加,可支配消费能力就会不多,房屋的价值不会更高。

‘3’: ‘PTRATIO’ 是该地区的中学和小学里,学生和老师的数目比(学生/老师)

  • ‘回答:’ 'PTRATIO’增加,说明学生/老师数目比增加,优质教育程度下降,政府配额不足,学位房优势不明显,价值会下降。

三、 建立模型

定义衡量标准

如果不能对模型的训练和测试的表现进行量化地评估,我们就很难衡量模型的好坏。通常我们会定义一些衡量标准,这些标准可以通过对某些误差或者拟合程度的计算来得到。我们通过运算[决定系数] R 2 R^2 R2 来量化模型的表现。模型的决定系数是回归分析中十分常用的统计信息,经常被当作衡量模型预测能力好坏的标准。

R 2 R^2 R2 的数值范围从0至1,表示目标变量的预测值和实际值之间的相关程度平方的百分比。一个模型的 R 2 R^2 R2 值为0还不如直接用平均值来预测效果好;而一个 R 2 R^2 R2 值为1的模型则可以对目标变量进行完美的预测。从0至1之间的数值,则表示该模型中目标变量中有百分之多少能够用特征来解释。模型也可能出现负值的 R 2 R^2 R2,这种情况下模型所做预测有时会比直接计算目标变量的平均值差很多。

在下方代码的 performance_metric 函数中,我们实现:

  • 使用 sklearn.metrics 中的 r2_score 来计算 y_truey_predict R 2 R^2 R2 值,作为对其表现的评判。
  • 将他们的表现评分储存到 score 变量中。
# TODO: Import 'r2_score'
from sklearn.metrics import r2_score
def performance_metric(y_true, y_predict):score= r2_score(y_true,y_predict)# Return the scorereturn score

拟合程度

假设一个数据集有五个数据且一个模型做出下列目标变量的预测:

真实数值预测数值
3.02.5
-0.50.0
2.02.1
7.07.8
4.25.3
你觉得这个模型已成功地描述了目标变量的变化吗?如果成功,请解释为什么,如果没有,也请给出原因。

提示1:运行下方的代码,使用 performance_metric 函数来计算 y_truey_predict 的决定系数。

提示2 R 2 R^2 R2 分数是指可以从自变量中预测的因变量的方差比例。 换一种说法:

  • R 2 R^2 R2 为0意味着因变量不能从自变量预测。
  • R 2 R^2 R2 为1意味着可以从自变量预测因变量。
  • R 2 R^2 R2 在0到1之间表示因变量可预测的程度。
  • R 2 R^2 R2 为0.40意味着 Y 中40%的方差可以从 X 预测。
# Calculate the performance of this model
score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])
print("Model has a coefficient of determination, R^2, of {:.3f}.".format(score))

Model has a coefficient of determination, R^2, of 0.923.

R^2=0.923,决定系数接近1,说明已经成功的描述了目标变量的变化.

数据分割与重排

接下来,我们需要把波士顿房屋数据集分成训练和测试两个子集。通常在这个过程中,数据也会被重排列,以消除数据集中由于顺序而产生的偏差。

  • 使用 sklearn.model_selection 中的 train_test_split, 将 featuresprices 的数据都分成用于训练的数据子集和用于测试的数据子集。
    • 分割比例为:80%的数据用于训练,20%用于测试;
    • 选定一个数值以设定 train_test_split 中的 random_state ,这会确保结果的一致性;
  • 将分割后的训练集与测试集分配给 X_train, X_test, y_trainy_test
# TODO: Import 'train_test_split'
from sklearn.model_selection import train_test_split# X_train:训练输入数据
# X_test:测试输入数据
# y_train:训练标签
# y_test:测试标签X = np.array(features)
Y = np.array(prices)# TODO: Shuffle and split the data into training and testing subsets
X_train, X_test, y_train, y_test =train_test_split(X, Y, test_size = 0.2,random_state=30)# Success
print("Training and testing split was successful.")

训练及测试

测试数据集通过未知数据来验证算法效果。如果没有数据来对模型进行测试,无法验证未知数据对结果预测。


四、分析模型的表现

在项目的第四步,我们来看一下不同参数下,模型在训练集和验证集上的表现。这里,我们专注于一个特定的算法(带剪枝的决策树,但这并不是这个项目的重点),和这个算法的一个参数 'max_depth'。用全部训练集训练,选择不同'max_depth' 参数,观察这一参数的变化如何影响模型的表现。画出模型的表现来对于分析过程十分有益。

学习曲线

下方区域内的代码会输出四幅图像,它们是一个决策树模型在不同最大深度下的表现。每一条曲线都直观得显示了随着训练数据量的增加,模型学习曲线的在训练集评分和验证集评分的变化,评分使用决定系数 R 2 R^2 R2。曲线的阴影区域代表的是该曲线的不确定性(用标准差衡量)。

vs.ModelLearning(features, prices)

在这里插入图片描述
max-depth = 1 ;当训练数据从0到50增加时,训练集曲线的评分急速下降,验证集曲线的评分急速增加,随着数据量大于50再往上增加,训练集评分逐渐缓慢0.5附近收敛,验证集评分逐渐缓慢向0.4左右收敛,分数大于100以后,训练集评分和验证集评分基本趋向稳定。如果再有更多的训练数据,也不会有效提升模型的表现。

复杂度曲线

下列代码内的区域会输出一幅图像,它展示了一个已经经过训练和验证的决策树模型在不同最大深度条件下的表现。这个图形将包含两条曲线,一个是训练集的变化,一个是验证集的变化。跟学习曲线相似,阴影区域代表该曲线的不确定性,模型训练和测试部分的评分都用的 performance_metric 函数。

vs.ModelComplexity(X_train, y_train)

在这里插入图片描述
1:当模型以最大深度 1训练时,模型的预测是出现很大的偏差还是出现了很大的方差?

  • ** 回答:** 欠拟合,出现大的偏差

2:当模型以最大深度10训练时,情形又如何呢?

  • ** 回答:** 过拟合,出现大的方差

3:图形中的哪些特征能够支持你的结论?

  • ** 回答:** 当深度=1时训练集评分和验证集评分比较低。深度=10时,训练集评分和验证集评分误差越来越大。

五、评估模型的表现

我们使用 fit_model 中的优化模型去预测客户特征集:

网格搜索法

1: 什么是网格搜索法?

  • 回答: 通过各种训练数据训练一堆模型,然后通过交叉验证数据挑选最佳模型。

2:如何用它来优化模型?

  • **回答:**例如决策树算法,通过不同深度的1,2,3,4的训练数据模型,通过交叉验证数据算出F1得分最高的,即最优化参数模型。

K折交叉验证法:

1:什么是K折交叉验证法

  • 回答: 数据被按一定比例分成了训练集和测试集,在K折交叉验证中训练集又被分成了K份,每一份作为验证集。并进行K份训练和验证,最后求出平均分数,以此来得出最优参数和最优模型。

2:GridSearchCV 是如何结合交叉验证来完成对最佳参数组合的选择的?

  • 回答: 可以通过输入参数,给出最优化的结果和参数

3:GridSearchCV 中的’cv_results_'属性能告诉我们什么?

  • 回答: 通过修改 fit_model(X_train, y_train) 函数的返回值 print(pd.DataFrame(reg.cv_results_)) 可以看到显示的是每次训练模型的结果集

4:网格搜索为什么要使用K折交叉验证?K折交叉验证能够避免什么问题?

  • 回答: 为了更好地拟合和预测,得出最优参数和最优模型。K折交叉验证通过将训练集分成K份,每一份依次作为验证集,并进行K次训练和验证,最后求出平均分数,这样可以减少模型表现得评分误差,从而更准确地找到最优参数

拟合模型

我们使用决策树算法训练一个模型。为了得出的是一个最优模型,我们需要使用网格搜索法训练模型,以找到最佳的 'max_depth' 参数。我们把'max_depth' 参数理解为决策树算法在做出预测前,允许其对数据提出问题的数量。决策树是监督学习算法中的一种。
ShuffleSplitScikit-Learn 版本0.17和0.18中有不同的参数。对于下面代码单元格中的 fit_model 函数:

  1. 定义 'regressor' 变量: 使用 sklearn.tree 中的 DecisionTreeRegressor 创建一个决策树的回归函数;
  2. 定义 'params' 变量: 为 'max_depth' 参数创造一个字典,它的值是从1至10的数组;
  3. 定义 'scoring_fnc' 变量: 使用 sklearn.metrics 中的 make_scorer 创建一个评分函数。将 ‘performance_metric’ 作为参数传至这个函数中;
  4. 定义 'grid' 变量: 使用 sklearn.model_selection 中的 GridSearchCV 创建一个网格搜索对象;将变量'regressor', 'params', 'scoring_fnc''cross_validator' 作为参数传至这个对象构造函数中;
# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'
from sklearn.metrics import  make_scorer
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import GridSearchCVdef fit_model(X, y):cv_sets = ShuffleSplit(n_splits=10, test_size=0.20, random_state=0)regressor = DecisionTreeRegressor(random_state=0)params = {"max_depth":list(range(1,11))}scoring_fnc = make_scorer(performance_metric)grid = GridSearchCV(regressor,params,scoring=scoring_fnc,cv=cv_sets)grid = grid.fit(X, y)return grid

六、做出预测

当我们用数据训练出一个模型,它现在就可用于对新的数据进行预测。在决策树回归函数中,模型已经学会对新输入的数据提问,并返回对目标变量的预测值。我们可以用这个预测来获取数据未知目标变量的信息,这些数据必须是不包含在训练数据之内的。

# Fit the training data to the model using grid search
reg = fit_model(X_train, y_train)# clf.cv_results_ 是选择参数的日志信息  
#print(pd.DataFrame(reg.cv_results_))
# Produce the value for 'max_depth'
print("Parameter 'max_depth' is {} for the optimal model.".format(reg.best_estimator_.get_params()['max_depth']))

最优模型的最大深度是 max_depth = 4

预测销售价格

假如我们是一个在波士顿地区的房屋经纪人,并期待使用此模型以帮助你的客户评估他们想出售的房屋。你已经从你的三个客户收集到以下的资讯:

特征客戶 1客戶 2客戶 3
房屋内房间总数5 间房间4 间房间8 间房间
社区贫困指数(%被认为是贫困阶层)17%32%3%
邻近学校的学生-老师比例15:122:112:1
  • 你会建议每位客户的房屋销售的价格为多少?
  • 从房屋特征的数值判断,这样的价格合理吗?为什么?

运行下列的代码区域,使用你优化的模型来为每位客户的房屋价值做出预测。

# Produce a matrix for client data
client_data = [[5, 17, 15], # Client 1[4, 32, 22], # Client 2[8, 3, 12]]  # Client 3# Show predictions
for i, price in enumerate(reg.predict(client_data)):print("Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price))

Predicted selling price for Client 1’s home: $409,752.00
Predicted selling price for Client 2’s home: $220,886.84
Predicted selling price for Client 3’s home: $937,650.00

1: 你会建议每位客户的房屋销售的价格为多少?

回答:

  • 客户1建议价格:$409,752.00 理由是:5间房 社区贫困指数为17%不到1/5 学生:老师比例15:1,教育环境中等偏上,房屋宜居性良好,综上价格合理。

  • 客户2建议价格:$220,886.84 理由是:4间房 社区贫困指数将近1/3,学生:老师比例22:1,教育环境很一般。房屋购买吸引力不是很好,所以价值低合理

  • 客户3建议价格:$937,650.00 理由是:8间房 社区贫困指数只有3%属于富人区,老师比例12:1教育环境优,综上该房屋属于上游配套,房间较高合理。

2: 从房屋特征的数值判断,这样的价格合理吗?为什么?

回答: 客户1、客户2、客户2的预测数据分别为:$409,752.00 、$220,886.84、 $937960;房间越多价值越高,邻近学校的学生-老师比例越低价值越高,社区贫困 指数(%)占比越低价值越高,这三个房屋特征数据预测数来的数据我认为是比较合理的,从价值来看几个特征衡量价值影响权重分别为:社区贫困指数 (高端生活区)> 邻近学校的学生-老师比例 (教育资源)> 房屋内房间总数

刚刚预测了三个客户的房子的售价。在这个练习中,我们用最优模型在整个测试数据上进行预测, 并计算相对于目标变量的决定系数 R 2 R^2 R2 的值。

# TODO Calculate the r2 score between 'y_true' and 'y_predict'
predicted = reg.predict(X_test)
r2 = performance_metric(y_test,predicted)print("Optimal model has R^2 score {:,.2f} on test data".format(r2))

Optimal model has R^2 score 0.80 on test data

R^2=0.8,说明符合变量的变化的结果.

模型健壮性

一个最优的模型不一定是一个健壮模型。有的时候模型会过于复杂或者过于简单,以致于难以泛化新增添的数据;有的时候模型采用的学习算法并不适用于特定的数据结构;有的时候样本本身可能有太多噪点或样本过少,使得模型无法准确地预测目标变量。这些情况下我们会说模型是欠拟合的。模型是否足够健壮来保证预测的一致性?

vs.PredictTrials(features, prices, fit_model, client_data)

在这里插入图片描述

10次训练结果除了第9次,其他基本在训练结果数值比较稳定,说明模型相对健壮

1:1978年所采集的数据,在已考虑通货膨胀的前提下,在今天是否仍然适用?

**回答:**不适用,数据太旧,无法体现现在的价值。

2: 数据中呈现的特征是否足够描述一个房屋?

回答: 不足,还有很多影响房屋价格的特征:房屋的新旧程度、楼层的高低、建筑结构等等。

3: 在波士顿这样的大都市采集的数据,能否应用在其它乡镇地区?

回答: 不适合

4:你觉得仅仅凭房屋所在社区的环境来判断房屋价值合理吗?

回答: 不合理,社区环境房屋价值的一部分,还应考虑地理位置、城市经济因素、交通因素、教育发达程度、已经房屋本身的一些其他特征等诸多因素。

文末推荐与福利

在这里插入图片描述
《Python从入门到精通(微课精编版)》免费包邮送出3本!

在这里插入图片描述
内容介绍:
《Python从入门到精通(微课精编版)》使用通俗易懂的语言、丰富的案例,详细介绍了Python语言的编程知识和应用技巧。全书共24章,内容包括Python开发环境、变量和数据类型、表达式、程序结构、序列、字典和集合、字符串、正则表达式、函数、类、模块、异常处理和程序调试、进程和线程、文件操作、数据库操作、图形界面编程、网络编程、Web编程、网络爬虫、数据处理等,还详细介绍了多个综合实战项目。其中,第24章为扩展项目在线开发,是一章纯线上内容。全书结构完整,知识点与示例相结合,并配有案例实战,可操作性强,示例源代码大都给出详细注释,读者可轻松学习,快速上手。本书采用O2O教学模式,线下与线上协同,以纸质内容为基础,同时拓展更多超值的线上内容,读者使用手机微信扫一扫即可快速阅读,拓展知识,开阔视野,获取超额实战体验。

抽奖方式: 评论区随机抽取3位小伙伴免费送出!
参与方式: 关注博主、点赞、收藏、评论区评论“人生苦短,我用Python!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!)
活动截止时间: 2023-12-12 20:00:00
当当购买链接: https://product.dangdang.com/29484801.html
京东购买链接: https://item.jd.com/13524355.html

😄😄😄名单公布方式: 下期活动开始将在评论区和私信一并公布,中奖者请三天内私信提供收货信息😄😄😄

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/206846.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element el-pagination solt 使用

起初只是想修改一下,共多少条的颜色,和跳转至 发现并不支持 网上找通过js修改,因为我这是在 dialog里面的 好像并不能适用 mounted() {document.getElementsByClassName("el-pagination__jump")[0].childNodes[0].nodeValue &quo…

企业集团采购系统(供应商、询价、招投标)-源码

一、业务需求 企业招标询价供应商管理系统是一种专业的采购管理系统,旨在帮助企业实现供应商关系的管理和采购成本的控制。该系统涵盖了企业采购管理的各个方面,包括采购预算、供应商管理、产品管理、采购计划、询价、竞价、招标、采购订单、采购合同执…

Python零基础入门之详解sort排序使用

文章目录 1.前言2.环境准备3.程序实现4.sort拓展关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Python兼职渠道 1.前言 昨天一…

低代码平台选型标准:功能、应用与优劣势分析

在数字化转型的浪潮下,中小企业面临满足市场需求、提高效率和竞争力的挑战。低代码平台做为数字化转型的重要工具,为中小企业带来了快速开发和定制应用程序解决方案。但是,在很多低代码平台中,选择是一个重要的环节。企业应该根据…

Linux学习教程(第十一章 Linux高级文件系统管理)二

第十一章 Linux高级文件系统管理(二) 九、Linux如何判断磁盘配额是否生效? 我们的磁盘配额已经生效,接下来测试一下是否会限制我们的用户。以 lamp1 用户为例, 因为 lamp1 用户除容量被限制外,也限制了文…

如何选择靠谱的软件测试外包公司?CMA、CNAS软件测试报告获取

作为信息科技产业的代表之一,软件公司受到了越来越多的关注,它们的发展为我国的科技创新提供了强大的战略支撑。软件测试作为提升软件产品质量的后盾,日益成为一个专业化、标准化和规范化的行业,软件测试外包公司就是这种背景下成…

软件开发全过程必备文档下载(@附所有文档)

在软件开发的全过程中,编写文档是一项至关重要的任务。良好的文档记录不仅可以提高开发效率,减少错误,还可以为后续维护和扩展提供可靠的依据。下面我们将探讨软件开发全过程中必备的几种文档。 1.需求文档 需求文档是软件开发项目的起点&a…

flutter添加全局水印

效果: 可以直接引用:disable_screenshots: ^0.2.0 但是有时候直接引用会报错,可以不引用插件直接把下面的源码工具类放在项目里面 工具类源码: import dart:io; import dart:math;import package:flutter/cupertino.dart; impor…

FastAPI请求体-多个参数

路径参数、查询参数,和请求体混合 首先,我们需要导入所需的库。我们将使用FastAPI、Path和Annotated来处理路由和参数,并使用BaseModel和Union来自定义数据模型。 完整示例代码 from typing import Annotated, Unionfrom fastapi import F…

剪切板管理 Paste中文 for Mac

Paste是一个方便的剪贴板管理工具,它可以帮助你更好地组织、查找和管理剪贴板中的内容。它提供了历史记录、搜索、组织、格式处理和云同步等功能,使你能够更高效地使用剪贴板,并节省时间和精力。无论是在个人使用还是团队协作中,P…

linux云服务器开启防火墙注意事件

重要的事情先说三遍: linux云服务器开启防火墙要先获取到云服务器的管理界面控制权!! linux云服务器开启防火墙要先获取到云服务器的管理界面控制权!! linux云服务器开启防火墙要先获取到云服务器的管理界面控制权!! 也就是能打开这个页面: 为什么这么说呢?如果你…

11.Java安卓程序设计-基于SSM框架的Android平台健康管理系统的设计与实现

摘要 随着人们生活水平的提高和健康意识的增强,健康管理系统在日常生活中扮演着越来越重要的角色。本研究旨在设计并实现一款基于SSM框架的Android平台健康管理系统,为用户提供全面的健康监测和管理服务。 在需求分析阶段,我们明确了系统的…

帆软报表决策报表改变屏幕大小后出现字体大小或滚动条异常解决方案:双向自适应

帆软报表决策报表改变屏幕大小后出现字体大小或滚动条异常。 解决方案:在模板和报表块中配置双向自适应 在每一个报表块中设置:

十五届蓝桥杯分享会(一)

注:省赛4月,决赛6月 一、蓝桥杯整体介绍 1.十四届蓝桥杯软件电子赛参赛人数:C 8w,java/python 2w,web 4k,单片机 1.8w,嵌入式/EDA5k,物联网 300 1.1设计类参赛人数:平…

护士执业资格考试报名照片要求和免审核上传攻略

新一年度的护考报名又开始啦,护理专业实行“双证书”制,只有具备毕业证护士执业资格证才能正式成为一名“白衣天使”,因此,护考报名关乎职业前程。目前已经进入护考的报名时间,很多朋友反映注册进入报名系统第一步就是…

yum源不起作用_yum无法安装程序_Linux默认源替换---Linux工作笔记067

今天在一台机器上进行安装yum install的时候提示,yum不可用,这时候,折腾了一会 后来更换了默认源就可以了. 首先: 可以看到原来的里面有个 yum.repos.d 里面放了很多源,但是这些源是不可以联网的. 是内网的源,所以,我对他进行了 mv yum.repos.d yum.repos.d.bak 重命名 然…

线性索引与行列号索引

一、含义 线性索引,顾名思义就是说把图像矩阵展平,相当于变成一维的图像数组,故像素点的线性索引就是其在图像数组中的索引值 行列号索引,对于一个二维的图像矩阵有行有列,知道行号和列号就可以唯一确定一个点的位置…

java基础之循环

Java中有三种主要的循环结构&#xff1a; while 循环do…while 循环for 循环 1、while循环 1.1、结构 while( 布尔表达式 ) { //循环内容 } 1.2、实例 public class TestWhile {public static void main(String[] args) {int x 1;while (x<10){System.out.println("…