参考文章
使用LabelMe标注目标检测数据集并转换为COCO2017格式_labelme转coco-CSDN博客
数据集选择
voc
这次不选择voc,因为文件组织太难了
voc2012文件夹组织
COCO
COCO介绍
MC COCO2017年主要包含以下四个任务:目标检测与分割、图像描述、人体关键点检测,如下所示:
annotations: 对应标注文件夹├── instances_train2017.json : 对应目标检测、分割任务的├── instances_val2017.json : 对应目标检测、分割任务的验证集标注文件├── captions_train2017.json : 对应图像描述的训练集标注文件├── captions_val2017.json : 对应图像描述的验证集标注文件├── person_keypoints_train2017.json : 对应人体关键点检测的训练集标注文件└── person_keypoints_val2017.json : 对应人体关键点检测的验证集标注文件夹Object segmentation : 目标级分割
Recognition in context : 图像情景识别
Superpixel stuff segmentation : 超像素分割
330K images (>200K labeled) : 超过33万张图像,标注过的图像超过20万张
1.5 million object instances : 150万个对象实例
80 object categories : 80个目标类别
91 stuff categories : 91个材料类别
5 captions per image : 每张图像有5段情景描述
250,000 people with keypoints : 对25万个人进行了关键点标注""" 注意 """
COCO数据集格式中,bbox 的保存格式为 [x, y, w, h]
如果需要转换为[x1,y1,x2,y2],可以通过如下进行转换
bbox = [x1, y1, x1 + w - 1, y1 + h - 1]
JSON文件的基本格式,以实例分割为例,主要有五个部分:info、licenses、images、annotations、categories
1.info记录关于数据集的一些基本信息
"info":{"description":"This is stable 1.0 version of the 2014 MS COCO dataset.","url":"http:\/\/mscoco.org","version":"1.0","year":2017,"contributor":"Microsoft COCO group","date_created":"2017-01-27 09:11:52.357475"
}
2.licenses是数据集遵循的一些许可
"licenses":{"url":"http:\/\/creativecommons.org\/licenses\/by-nc-sa\/2.0\/","id":1,"name":"Attribution-NonCommercial-ShareAlike License"
}
3.images是数据集中包含的图像,长度等于图像的数量
"images":{"coco_url": "", "date_captured": "", "file_name": "000001.jpg", "flickr_url": "", "id": 1, "license": 0, "width": 416, "height": 416
}
4.annotations是数据集中包含的实例掩膜,数量等于bounding box的数量。segmentation格式取决于这个实例是一个单个的对象(即iscrowd=0,将使用polygons格式,以多边形顶点表示)还是一组对象(即iscrowd=1,将使用RLE格式,mask编码)
"annotations":{"id": int,"image_id": int,"category_id": int,"segmentation": RLE or [polygon],"area": float,"bbox": [x,y,width,height],"iscrowd": 0 or 1
}# 以多边形顶点形式表示的实例:
"annotations":{"segmentation": [[510.66,423.01,511.72,420.03,510.45......]],"area": 702.1057499999998,"iscrowd": 0,"image_id": 289343,"bbox": [473.07,395.93,38.65,28.67],"category_id": 18,"id": 1768
}
5.categories是数据集中的类别信息
"categories":{"id": int,"name": str,"supercategory": str,
}
解析其中的类别ID、图像ID:
coco = COCO(annotation_file.json)
catIds = coco.getCatIds()
imgIds = coco.getImgIds()
将labelme生成的json文件转成coco格式
困难:我的labelme生成的json数据集格式没有imageData,所以网上的好多用不了。解决方案如下:
假设我有一个mycoco的数据集,是符合coco2017数据集格式的,那么他的目录结构应该如下,在mycoco文件夹下有4个文件夹:annotations(存放train、val和test的标注信息)、train(存放train集图片)、val(存放val集图片)、test(存放test集图片)
现在我们已经用labelme标注好的信息,如何转换为上面的coco结构呢?
import argparse
import glob
import json
import os
import os.path as osp
import shutil
import xml.etree.ElementTree as ETimport numpy as np
import PIL.ImageDraw
from tqdm import tqdm
import cv2label_to_num = {}
categories_list = []
labels_list = []class MyEncoder(json.JSONEncoder):def default(self, obj):if isinstance(obj, np.integer):return int(obj)elif isinstance(obj, np.floating):return float(obj)elif isinstance(obj, np.ndarray):return obj.tolist()else:return super(MyEncoder, self).default(obj)def images_labelme(data, num,img_label):print(img_label)image = {}image['height'] = data['imageHeight']image['width'] = data['imageWidth']image['id'] = num + 1# if '\\' in data['imagePath']:img_label = str(img_label) + ".jpg"image['file_name'] = img_label# else:# image['file_name'] = data['imagePath'].split('/')[-1]return imagedef images_cityscape(data, num, img_file):image = {}image['height'] = data['imgHeight']image['width'] = data['imgWidth']image['id'] = num + 1image['file_name'] = img_filereturn imagedef categories(label, labels_list):category = {}category['supercategory'] = 'component'category['id'] = len(labels_list) + 1category['name'] = labelreturn categorydef annotations_rectangle(points, label, image_num, object_num, label_to_num):annotation = {}seg_points = np.asarray(points).copy()seg_points[1, :] = np.asarray(points)[2, :]seg_points[2, :] = np.asarray(points)[1, :]annotation['segmentation'] = [list(seg_points.flatten())]annotation['iscrowd'] = 0annotation['image_id'] = image_num + 1annotation['bbox'] = list(map(float, [points[0][0], points[0][1], points[1][0] - points[0][0], points[1][1] - points[0][1]]))annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]annotation['category_id'] = label_to_num[label]annotation['id'] = object_num + 1return annotationdef annotations_polygon(height, width, points, label, image_num, object_num,label_to_num):annotation = {}annotation['segmentation'] = [list(np.asarray(points).flatten())]annotation['iscrowd'] = 0annotation['image_id'] = image_num + 1annotation['bbox'] = list(map(float, get_bbox(height, width, points)))annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]annotation['category_id'] = label_to_num[label]annotation['id'] = object_num + 1return annotationdef get_bbox(height, width, points):polygons = pointsmask = np.zeros([height, width], dtype=np.uint8)mask = PIL.Image.fromarray(mask)xy = list(map(tuple, polygons))PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)mask = np.array(mask, dtype=bool)index = np.argwhere(mask == 1)rows = index[:, 0]clos = index[:, 1]left_top_r = np.min(rows)left_top_c = np.min(clos)right_bottom_r = np.max(rows)right_bottom_c = np.max(clos)return [left_top_c, left_top_r, right_bottom_c - left_top_c,right_bottom_r - left_top_r]def deal_json(ds_type, img_path, json_path):data_coco = {}images_list = []annotations_list = []image_num = -1object_num = -1for img_file in os.listdir(img_path):print(img_path)img_label = os.path.splitext(img_file)[0]if img_file.split('.')[-1] not in ['bmp', 'jpg', 'jpeg', 'png', 'JPEG', 'JPG', 'PNG']:continuelabel_file = osp.join(json_path, img_label + '.json')print('Generating dataset from:', label_file)image_num = image_num + 1with open(label_file) as f:data = json.load(f)if ds_type == 'labelme':images_list.append(images_labelme(data, image_num,img_label))elif ds_type == 'cityscape':images_list.append(images_cityscape(data, image_num, img_file))if ds_type == 'labelme':for shapes in data['shapes']:object_num = object_num + 1label = shapes['label']if label not in labels_list:categories_list.append(categories(label, labels_list))labels_list.append(label)label_to_num[label] = len(labels_list)p_type = shapes['shape_type']if p_type == 'polygon':points = shapes['points']annotations_list.append(annotations_polygon(data['imageHeight'], data['imageWidth'], points, label, image_num,object_num, label_to_num))if p_type == 'rectangle':(x1, y1), (x2, y2) = shapes['points']x1, x2 = sorted([x1, x2])y1, y2 = sorted([y1, y2])points = [[x1, y1], [x2, y2], [x1, y2], [x2, y1]]annotations_list.append(annotations_rectangle(points, label, image_num,object_num, label_to_num))elif ds_type == 'cityscape':for shapes in data['objects']:object_num = object_num + 1label = shapes['label']if label not in labels_list:categories_list.append(categories(label, labels_list))labels_list.append(label)label_to_num[label] = len(labels_list)points = shapes['polygon']annotations_list.append(annotations_polygon(data['imgHeight'], data['imgWidth'], points, label, image_num, object_num,label_to_num))data_coco['images'] = images_listdata_coco['categories'] = categories_listdata_coco['annotations'] = annotations_listreturn data_cocodef voc_get_label_anno(ann_dir_path, ann_ids_path, labels_path):with open(labels_path, 'r') as f:labels_str = f.read().split()labels_ids = list(range(1, len(labels_str) + 1))with open(ann_ids_path, 'r') as f:ann_ids = [lin.strip().split(' ')[-1] for lin in f.readlines()]ann_paths = []for aid in ann_ids:if aid.endswith('xml'):ann_path = os.path.join(ann_dir_path, aid)else:ann_path = os.path.join(ann_dir_path, aid + '.xml')ann_paths.append(ann_path)return dict(zip(labels_str, labels_ids)), ann_pathsdef voc_get_image_info(annotation_root, im_id):filename = annotation_root.findtext('filename')assert filename is not Noneimg_name = os.path.basename(filename)size = annotation_root.find('size')width = float(size.findtext('width'))height = float(size.findtext('height'))image_info = {'file_name': filename,'height': height,'width': width,'id': im_id}return image_infodef voc_get_coco_annotation(obj, label2id):label = obj.findtext('name')assert label in label2id, "label is not in label2id."category_id = label2id[label]bndbox = obj.find('bndbox')xmin = float(bndbox.findtext('xmin'))ymin = float(bndbox.findtext('ymin'))xmax = float(bndbox.findtext('xmax'))ymax = float(bndbox.findtext('ymax'))assert xmax > xmin and ymax > ymin, "Box size error."o_width = xmax - xmino_height = ymax - yminanno = {'area': o_width * o_height,'iscrowd': 0,'bbox': [xmin, ymin, o_width, o_height],'category_id': category_id,'ignore': 0,}return annodef voc_xmls_to_cocojson(annotation_paths, label2id, output_dir, output_file):output_json_dict = {"images": [],"type": "instances","annotations": [],"categories": []}bnd_id = 1 # bounding box start idim_id = 0print('Start converting !')for a_path in tqdm(annotation_paths):# Read annotation xmlann_tree = ET.parse(a_path)ann_root = ann_tree.getroot()img_info = voc_get_image_info(ann_root, im_id)output_json_dict['images'].append(img_info)for obj in ann_root.findall('object'):ann = voc_get_coco_annotation(obj=obj, label2id=label2id)ann.update({'image_id': im_id, 'id': bnd_id})output_json_dict['annotations'].append(ann)bnd_id = bnd_id + 1im_id += 1for label, label_id in label2id.items():category_info = {'supercategory': 'none', 'id': label_id, 'name': label}output_json_dict['categories'].append(category_info)output_file = os.path.join(output_dir, output_file)with open(output_file, 'w') as f:output_json = json.dumps(output_json_dict)f.write(output_json)def widerface_to_cocojson(root_path):train_gt_txt = os.path.join(root_path, "wider_face_split", "wider_face_train_bbx_gt.txt")val_gt_txt = os.path.join(root_path, "wider_face_split", "wider_face_val_bbx_gt.txt")train_img_dir = os.path.join(root_path, "WIDER_train", "images")val_img_dir = os.path.join(root_path, "WIDER_val", "images")assert train_gt_txtassert val_gt_txtassert train_img_dirassert val_img_dirsave_path = os.path.join(root_path, "widerface_train.json")widerface_convert(train_gt_txt, train_img_dir, save_path)print("Wider Face train dataset converts sucess, the json path: {}".format(save_path))save_path = os.path.join(root_path, "widerface_val.json")widerface_convert(val_gt_txt, val_img_dir, save_path)print("Wider Face val dataset converts sucess, the json path: {}".format(save_path))def widerface_convert(gt_txt, img_dir, save_path):output_json_dict = {"images": [],"type": "instances","annotations": [],"categories": [{'supercategory': 'none', 'id': 0, 'name': "human_face"}]}bnd_id = 1 # bounding box start idim_id = 0print('Start converting !')with open(gt_txt) as fd:lines = fd.readlines()i = 0while i < len(lines):image_name = lines[i].strip()bbox_num = int(lines[i + 1].strip())i += 2img_info = get_widerface_image_info(img_dir, image_name, im_id)if img_info:output_json_dict["images"].append(img_info)for j in range(i, i + bbox_num):anno = get_widerface_ann_info(lines[j])anno.update({'image_id': im_id, 'id': bnd_id})output_json_dict['annotations'].append(anno)bnd_id += 1else:print("The image dose not exist: {}".format(os.path.join(img_dir, image_name)))bbox_num = 1 if bbox_num == 0 else bbox_numi += bbox_numim_id += 1with open(save_path, 'w') as f:output_json = json.dumps(output_json_dict)f.write(output_json)def get_widerface_image_info(img_root, img_relative_path, img_id):image_info = {}save_path = os.path.join(img_root, img_relative_path)if os.path.exists(save_path):img = cv2.imread(save_path)image_info["file_name"] = os.path.join(os.path.basename(os.path.dirname(img_root)), os.path.basename(img_root),img_relative_path)image_info["height"] = img.shape[0]image_info["width"] = img.shape[1]image_info["id"] = img_idreturn image_infodef get_widerface_ann_info(info):info = [int(x) for x in info.strip().split()]anno = {'area': info[2] * info[3],'iscrowd': 0,'bbox': [info[0], info[1], info[2], info[3]],'category_id': 0,'ignore': 0,'blur': info[4],'expression': info[5],'illumination': info[6],'invalid': info[7],'occlusion': info[8],'pose': info[9]}return annodef main():parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)parser.add_argument('--dataset_type',help='the type of dataset, can be `voc`, `widerface`, `labelme` or `cityscape`')parser.add_argument('--json_input_dir', help='input annotated directory')parser.add_argument('--image_input_dir', help='image directory')parser.add_argument('--output_dir', help='output dataset directory', default='./')parser.add_argument('--train_proportion',help='the proportion of train dataset',type=float,default=1.0)parser.add_argument('--val_proportion',help='the proportion of validation dataset',type=float,default=0.0)parser.add_argument('--test_proportion',help='the proportion of test dataset',type=float,default=0.0)parser.add_argument('--voc_anno_dir',help='In Voc format dataset, path to annotation files directory.',type=str,default=None)parser.add_argument('--voc_anno_list',help='In Voc format dataset, path to annotation files ids list.',type=str,default=None)parser.add_argument('--voc_label_list',help='In Voc format dataset, path to label list. The content of each line is a category.',type=str,default=None)parser.add_argument('--voc_out_name',type=str,default='voc.json',help='In Voc format dataset, path to output json file')parser.add_argument('--widerface_root_dir',help='The root_path for wider face dataset, which contains `wider_face_split`, `WIDER_train` and `WIDER_val`.And the json file will save in this path',type=str,default=None)args = parser.parse_args()try:assert args.dataset_type in ['voc', 'labelme', 'cityscape', 'widerface']except AssertionError as e:print('Now only support the voc, cityscape dataset and labelme dataset!!')os._exit(0)if args.dataset_type == 'voc':assert args.voc_anno_dir and args.voc_anno_list and args.voc_label_listlabel2id, ann_paths = voc_get_label_anno(args.voc_anno_dir, args.voc_anno_list, args.voc_label_list)voc_xmls_to_cocojson(annotation_paths=ann_paths,label2id=label2id,output_dir=args.output_dir,output_file=args.voc_out_name)elif args.dataset_type == "widerface":assert args.widerface_root_dirwiderface_to_cocojson(args.widerface_root_dir)else:try:assert os.path.exists(args.json_input_dir)except AssertionError as e:print('The json folder does not exist!')os._exit(0)try:assert os.path.exists(args.image_input_dir)except AssertionError as e:print('The image folder does not exist!')os._exit(0)try:assert abs(args.train_proportion + args.val_proportion \+ args.test_proportion - 1.0) < 1e-5except AssertionError as e:print('The sum of pqoportion of training, validation and test datase must be 1!')os._exit(0)# Allocate the dataset.total_num = len(glob.glob(osp.join(args.json_input_dir, '*.json')))if args.train_proportion != 0:train_num = int(total_num * args.train_proportion)out_dir = args.output_dir + '/train2017'if not os.path.exists(out_dir):os.makedirs(out_dir)else:train_num = 0if args.val_proportion == 0.0:val_num = 0test_num = total_num - train_numout_dir = args.output_dir + '/test2017'if args.test_proportion != 0.0 and not os.path.exists(out_dir):os.makedirs(out_dir)else:val_num = int(total_num * args.val_proportion)test_num = total_num - train_num - val_numval_out_dir = args.output_dir + '/val2017'if not os.path.exists(val_out_dir):os.makedirs(val_out_dir)test_out_dir = args.output_dir + '/test2017'if args.test_proportion != 0.0 and not os.path.exists(test_out_dir):os.makedirs(test_out_dir)count = 1for img_name in os.listdir(args.image_input_dir):if count <= train_num:if osp.exists(args.output_dir + '/train2017/'):shutil.copyfile(osp.join(args.image_input_dir, img_name),osp.join(args.output_dir + '/train2017/', img_name))else:if count <= train_num + val_num:if osp.exists(args.output_dir + '/val2017/'):shutil.copyfile(osp.join(args.image_input_dir, img_name),osp.join(args.output_dir + '/val2017/', img_name))else:if osp.exists(args.output_dir + '/test2017/'):shutil.copyfile(osp.join(args.image_input_dir, img_name),osp.join(args.output_dir + '/test2017/', img_name))count = count + 1# Deal with the json files.if not os.path.exists(args.output_dir + '/annotations'):os.makedirs(args.output_dir + '/annotations')if args.train_proportion != 0:train_data_coco = deal_json(args.dataset_type,args.output_dir + '/train2017',args.json_input_dir)train_json_path = osp.join(args.output_dir + '/annotations','instance_train.json')json.dump(train_data_coco,open(train_json_path, 'w'),indent=4,cls=MyEncoder)if args.val_proportion != 0:val_data_coco = deal_json(args.dataset_type,args.output_dir + '/val2017',args.json_input_dir)val_json_path = osp.join(args.output_dir + '/annotations','instance_val.json')json.dump(val_data_coco,open(val_json_path, 'w'),indent=4,cls=MyEncoder)if args.test_proportion != 0:test_data_coco = deal_json(args.dataset_type,args.output_dir + '/test2017',args.json_input_dir)test_json_path = osp.join(args.output_dir + '/annotations','instance_test.json')json.dump(test_data_coco,open(test_json_path, 'w'),indent=4,cls=MyEncoder)if __name__ == '__main__':"""python j2coco.py --dataset_type labelme --json_input_dir data-labelme/json --image_input_dir data-labelme/imgs --output_dir ./coco/ --train_proportion 0.8 --val_proportion 0.2 --test_proportion 0.0""""""python j2coco.py --dataset_type labelme --json_input_dir data-labelme/json --image_input_dir data-labelme/imgs --output_dir ./coco/ --train_proportion 0.5 --val_proportion 0.5"""main()
上面的代码是从paddledetection拿来的(不得不说百度的的小脚本还是挺多的),通过命令行参数:
python tools/x2coco.py \
--dataset_type labelme \
--json_input_dir ./labelme_annos/ \
--image_input_dir ./labelme_imgs/ \
--output_dir ./mycoco/ \
--train_proportion 0.8 \
--val_proportion 0.2 \
--test_proportion 0.0
- dataset_type:是将labelme转为coco,锁着这里默认就是labelme
- json_input_dir:指向labelme的json文件所在路径
- image_input_dir:指向labelme的img文件所在路径(在这里json和img都是相同的路径)
- output_dir :转为coco后输出的文件夹路径
- train_proportion、val_proportion、test_proportion:划分数据集比例,总之三者之和必须为1
成功执行后就能看到mycoco文件夹:
注意:虽然现在目录结构上和coco一致了,但是在很多开源目标检测项目中,默认的文件名字不太一样,比如有的文件夹为train2017、val2017和test2017,或者annotations中的文件名为instances_train.json(多了一个s),请结合实际情况修改即可