AI并行计算:CUDA和ROCm

1 介绍

1.1 CUDA

CUDA(Compute Unified Device Architecture)是Nvidia于2006年推出的一套通用并行计算架构,旨在解决在GPU上的并行计算问题。其易用性和便捷性能够方便开发者方便的进行GPU编程,充分利用GPU的并行能力,可以大幅提高程序的性能。目前CUDA已成为GPU加速计算的事实标准。

自从CUDA诞生以来,CUDA生态系统也迅速的发展,包括了大量的软件开发工具、服务和解决方案。CUDA Toolkit包括了库、调试和优化工具、编译器和运行时库。

CUDA特点:

  • 专有性:CUDA仅适用于NVIDIA的GPU。

  • 成熟度:CUDA拥有广泛的应用案例,被广泛应用于学术研究和工业界。

  • 生态系统:CUDA有一个成熟且广泛的生态系统,包括深度学习框架(如TensorFlow和PyTorch)、科学计算库和多种工具。

1.2 ROCm

AMD ROCm是Radeon Open Compute (platform)的缩写,是2015年AMD公司为了对标CUDA生态而开发的一套用于HPC和超大规模GPU计算提供的开源软件开发平台,ROCm只支持Linux平台。

同样ROCm包含一些列的开发工具、软件框架、库、编译工具、编程模型等。

ROCm特点:

  • 开放性:作为一个开源项目,ROCm旨在提供一个跨供应商的GPU计算解决方案。

  • 兼容性:主要支持AMD的GPU,但也在向其他厂商的硬件开放。

  • 生态系统:虽然相对较新,但正在迅速发展,支持包括TensorFlow和PyTorch在内的多个深度学习框架。

2 CUDA和ROCm对比

2.1 编程模型和API

NVIDIA

AMD

功能描述

CUDA

HIP

为C/C++开发GPU加速程序提供全面的环境,API、Runtime、编译器、调试工具等。

OpenCL

OpenCL

面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,

OpenACC

并行计算指令,研究人员和技术程序员最常用的GPU并行编程模型。

OpenMP

OpenMP是一套编译器指令、库例程和环境变量的规范,可用于指定Fortran和C/C++程序中的高级并行性。

2.2 编译及工具链

NVIDIA

AMD

功能描述

NVCC

ROCmCC / HCC

编译器

CUDA-GDB

ROCgdb

debug工具

HIPify

将CUDA原生代码转换为HIP原生c++代码

Nvidia Nsight

ROCm Profiling Tools

性能分析工具

nvidia-smi

rocm-msi

系统管理界面和命令行界面的工具

2.3 GPU加速库

CUDA和ROCm的基础框架提供众多的支持库,包括基础数学库、AI支持库、通信库、并行库等一些列,下面将列出来做个对照:

  • 数学库

NVIDIA

AMD

功能描述

cuBLAS

rocBLAS

基本线性代数库(basic linear algebra,BLAS)

cuFFT

rocFFT

快速傅里叶变换库(Fast Fourier Transforms)

CUDA Math Library

标准数学函数库

cuRAND

随机数生成(random number generation,RNG)

cuSOLVER

rocSOLVER

密集和稀疏直接求解器

cuSPARSE

rocSPARSE / rocALUTION

稀疏矩阵BLAS

cuTENSOR

rocWMMA

张量线性代数库

AmgX

用于模拟和隐式非结构化方法线性解算器

  • 并行算法库

NVIDIA

AMD

功能描述

Thrust

Parallel STL / rocThrust

C++并行算法和数据结构库

  • 图像和视频库

NVIDIA

AMD

功能描述

nvJPEG

用于JPEG解码的高性能GPU加速库

Nvidia Performance Primitive

提供GPU加速的图像、视频和信号处理功能

Nvidia Video Codec SDK

硬件加速视频编码和解码的一整套API、示例和文档网址:yii666.com<

  • 通信库

NVIDIA

AMD

功能描述

NVSHMEM

OpenSHMEM标准的GPU内存,具有扩展以提高GPU性能。

NCCL

RCCL

多GPU、多节点通信

  • 深度学习/人工智能库

Nvidia

AMD

  • cuDNN:深度神经网络基元库

  • TensorRT:用于生产部署的高性能深度学习推理优化器和运行时

  • Nvidia Riva:用于开发交互式情景AI会话应用的平台

  • Nvidia DeepStream SDK:用于基于AI的视频理解和多传感器处理的实时流分析工具包

  • Nvidia DLI:用于解码和增强图像和视频以加速深度学习应用的便携式开源库

  • MIOpen:AMD的深度学习基元库,提供不同运算符的高度优化和手动调整实现,如卷积、批量归一化、池化、softmax、激活和递归神经网络(RNN)层,用于训练和推理。

  • MIGraphX:AMD的图形推理引擎,可加速机器学习模型推理。AMD MIGraphX可以通过直接安装二进制文件或从源代码构建来使用。

  • MIVisionX:MIVisionX工具包是一套全面的计算机视觉和机器智能库、实用程序和应用程序,捆绑在一个工具包中。AMD MIVisionX提供高度优化的Khronos OpenVX™和OpenVX™扩展的开源实现沿着支持ONNX和Khronos NNEF™交换格式的卷积神经网络模型编译器和优化器。

2.4 开发工具

Nvidia

AMD

  • Nvidia DCGM:数据中心管理

  • nvidia-smi:系统管理界面和命令行界面的工具

  • Nvidia Nsight:调试和性能分析工具

  • ROCm Data Center Tools:数据中心环境中AMD GPU的管理

  • rocm-smi:系统管理界面和命令行界面的工具

  • ROCm Profiling Tools:性能分析工具

  • ROCmDebugger:调试工具

3 总结

CUDA和ROCm对比总结如下:

  • 硬件支持: CUDA专注于NVIDIA的GPU,而ROCm更注重提供跨平台的支持,尽管目前主要针对AMD的GPU。

  • 开放性: ROCm作为一个开源项目,更加开放和灵活,而CUDA是NVIDIA的专有技术。

  • 生态系统和成熟度: CUDA拥有更成熟的生态系统和更广泛的应用案例。相比之下,ROCm还在发展中,但正在迅速成长。

  • 性能: 性能方面,CUDA和ROCm都能提供优秀的计算能力,但具体表现会根据应用场景和硬件配置而有所不同。

CUDA和ROCm都是用于高性能计算的平台,特别是在GPU加速的情况下。它们提供了工具和库,使得开发者能够有效地利用GPU来加速计算密集型任务,选择CUDA还是ROCm主要取决于业务的特定需求、所使用的硬件以及对开放性的偏好。CUDA在高性能计算领域更加成熟和普遍,但如果你使用AMD的硬件或者更倾向于使用开源技术,ROCm是一个不断增长的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/206343.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用ArcGIS Pro制作类似CAD的尺寸注记

经常使用CAD制图的朋友应该比较熟悉CAD内的尺寸标注&#xff0c;这样的标注看起来直观且简洁&#xff0c;那么在ArcGIS Pro内能不能制作这样尺寸注记呢&#xff0c;答案是肯定的&#xff0c;这里为大家介绍一下制作的方法&#xff0c;希望能对你有所帮助。 数据来源 本教程所…

OpenGL ES 帧缓冲对象介绍和使用示例

一、介绍 1. 帧缓冲对象 默认情况下&#xff0c;OpenGL渲染的目标是屏幕&#xff0c;但如果你不想直接渲染到屏幕上&#xff0c;还需要对渲染结果做某些后期处理、渲染到纹理、阴影映射等操作&#xff0c;便可以使用帧缓冲对象&#xff0c;实现离屏渲染。 帧缓冲对象&#x…

JSON字符串转泛型对象

JSON字符串转泛型对象 以下问题只仅限于博主自身遇到&#xff0c;不代表绝对出现问题 相关类展示&#xff1a; 参数基类 public class BaseParams { }基类 public abstract class AbstractPush<Params extends BaseParams> {protected abstract void execute(Params…

怎么选护眼灯?考公必备护眼灯推荐

随着现在的近视问题受到越来越广泛的关注&#xff0c;各种护眼产品的需求量也一直在快速增加&#xff0c;其中最受广大家长、学生党欢迎的还是护眼台灯。因为专业的护眼台灯不仅可以补充我们夜晚工作、学习时不足的光亮&#xff0c;避免眼睛长时间处于昏暗的环境导致疲劳。 而…

018 OpenCV 人脸检测

目录 一、环境 二、分类器原理 2.1、概述 2.2、工作原理 三、人脸检测代码 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、分类器原理 CascadeClassifier是OpenCV&#xff08;开源计算机视觉库&#xff09;中的一个强大的类…

day01十五模拟第二期

2 2——608#include <stdio.h> #include <math.h>int main(int argc, const char * argv[]) {int res1;for(int i1;i<2023;i){res(res*2)%1000;}printf("%d",res );return 0; }3 4-----4169 #include <stdio.h> #include<string.h> #inc…

C语言——指针(五)

&#x1f4dd;前言&#xff1a; 上篇文章C语言——指针&#xff08;四&#xff09;更加深入的介绍了不同类型指针的特点&#xff0c;这篇文章主要想记录一下函数与指针的结合运用以及const和assert关于指针的用法&#xff1a; 1&#xff0c;函数与指针 2&#xff0c;const 3&am…

3.PyTorch——常用神经网络层

import numpy as np import pandas as pd import torch as t from PIL import Image from torchvision.transforms import ToTensor, ToPILImaget.__version__2.1.13.1 图像相关层 图像相关层主要包括卷积层&#xff08;Conv&#xff09;、池化层&#xff08;Pool&#xff09;…

node.js和浏览器之间的区别

node.js是什么 Node.js是一种基于Chrome V8引擎的JavaScript运行环境&#xff0c;可以在服务器端运行JavaScript代码 Node.js 在浏览器之外运行 V8 JavaScript 引擎。 这使得 Node.js 非常高效。 浏览器如何运行js代码 nodejs运行环境 在浏览器中&#xff0c;大部分时间你所…

Linux系统调试课:USB 常用调试方法

文章目录 一、USB调试工具有哪些二、USB相关节点2.1、USB枚举成功标志2.2、USB speed查询2.3、USB 查询PID、VID沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要 介绍 USB 常用调试方法。 一、USB调试工具有哪些

Sanic:一个极速Python Web框架

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Sanic&#xff1a;一个极速Python Web框架&#xff0c;全文3500字&#xff0c;阅读大约12分钟。 随着 Web 应用的日益复杂&#xff0c;选择一个高性能的 Web 框架变得尤为…

扫描器的使用

漏扫器 注意事项 扫描器会给客户的业务造成影响。比如&#xff0c;如果存在sql注入漏洞&#xff08;重大的漏洞&#xff09;的话&#xff0c;会给客户的数据库插入脏数据&#xff0c;后果很严重 主机漏扫 针对IP地址和网段的漏洞扫描&#xff0c;例如&#xff1a;22端口弱口…

LCM-LoRA:a universal stable-diffusion acceleration module

Consistency is All You Need - wrong.wang什么都不用做生成却快了十倍其实也并非完全不可能https://wrong.wang/blog/20231111-consistency-is-all-you-need/ 1.Stable diffusion实在预训练VAE空间训练diffusion model的结果。 2.consistency decoder是用consistency model技…

ISIS默认路由下发的各种机制

作者简介&#xff1a;大家好&#xff0c;我是Asshebaby&#xff0c;热爱网工&#xff0c;有网络方面不懂的可以加我一起探讨 :1125069544 个人主页&#xff1a;Asshebaby博客 当前专栏&#xff1a; 网络HCIP内容 特色专栏&#xff1a; 常见的项目配置 本文内容&am…

017 OpenCV 向量机SVM

目录 一、环境 二、SVM原理 三、完整代码 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、SVM原理 OpenCV中的向量机&#xff08;SVM&#xff09;是一种监督学习算法&#xff0c;用于分类和回归分析。它通过找到一个最优的超平…

振弦采集仪在岩土工程中的探索与应用

振弦采集仪在岩土工程中的探索与应用 振弦采集仪是一种常用的测量仪器&#xff0c;在岩土工程中具有重要的应用价值。它主要利用振弦原理&#xff0c;通过测量振动信号的特征参数来分析地下土体的力学特性以及工程中的变形情况。 振弦采集仪早期主要用于建筑物、桥梁、堤坝等…

手机拍照的图片,如何传到电脑上?

手机受性能和屏幕限制&#xff0c;其应用功能也多少会因此而受到影响&#xff0c;比如在金鸣识别的电脑客户端&#xff0c;用户可一次性提交100张的图片进行识别&#xff0c;而在移动端&#xff0c;则最多只能一次三张&#xff0c;如何破这个“局”呢&#xff1f; 一、有扫描仪…

RT-DETR优化:Backbone改进 | UniRepLKNet,通用感知大内核卷积网络,RepLK改进版本 | 2023.11

🚀🚀🚀本文改进: UniRepLKNet,通用感知大内核卷积网络,ImageNet-22K预训练,精度和速度SOTA,ImageNet达到88%, COCO达到56.4 box AP,ADE20K达到55.6 mIoU 🚀🚀🚀RT-DETR改进创新专栏:http://t.csdnimg.cn/vuQTz 学姐带你学习YOLOv8,从入门到创新,轻轻松松…

Linux centos8安装JDK1.8、tomcat

一、安装jdk 1.如果之前安装过jdk&#xff0c;先卸载掉旧的 rpm -qa | grep -i jdk 2.检查yum中有没有java1.8的包 yum list java-1.8* 3.yum安装jdk yum install java-1.8.0-openjdk* -y 4.验证 二、安装tomcat Index of /tomcat 可以在这里选择你想要安装的tomcat版本…

Centos7部署Graylog5.2日志系统

Graylog5.2部署 Graylog 5.2适配MongoDB 5.x~6.x&#xff0c;MongoDB5.0要求CPU支持AVX指令集。 主机说明localhost部署Graylog&#xff0c;需要安装mongodb-org-6.0、 Elasticsearch7.10.2 参考&#xff1a; https://blog.csdn.net/qixiaolinlin/article/details/129966703 …