BiseNet实现遥感影像地物分类

遥感地物分类通过对遥感图像中的地物进行准确识别和分类,为资源管理、环境保护、城市规划、灾害监测等领域提供重要信息,有助于实现精细化管理和科学决策,提升社会治理和经济发展水平。深度学习遥感地物分类在提高分类精度、自动化程度、处理大规模数据、普适性以及推动遥感技术创新和发展等方面都具有重要的意义。本文将利用深度学习BiseNet实现遥感地物分类。

数据集

本文使用的数据集为WHDLD数据集[1](Wuhan dense labeling dataset)。WHDLD数据集包括4940张高分辨率遥感影像,包含6种土地覆盖类型,影像尺寸均被裁剪至256×256像素。下面是一些数据集示例。 alt

BiSeNet

BiseNet[2](Bilateral Segmentation Network)是一种用于图像分割的深度学习网络。它具有双边分割的特点,可以同时处理空间信息和上下文信息,从而实现高效、准确的图像分割。

具体来说,BiseNet由两个分支组成:空间路径(spatial path)和上下文路径(context path)。其中,空间路径具有较小的感受野,可以捕获丰富的空间信息并生成高分辨率的特征图;而上下文路径则具有较大的感受野,可以捕获更多的上下文信息并生成低分辨率的特征图。这两个路径通过一个特征融合模块进行融合,从而生成既包含丰富空间信息又包含上下文信息的分割结果。

在BiseNet中,还有一些关键的技术和设计,如轻量级模型设计、注意力机制、特征融合等,这些技术和设计可以进一步提升网络的性能和效率。 alt

网络复现

resnet18

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as modelzoo

resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'


from torch.nn import BatchNorm2d


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    def __init__(self, in_chan, out_chan, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(in_chan, out_chan, stride)
        self.bn1 = BatchNorm2d(out_chan)
        self.conv2 = conv3x3(out_chan, out_chan)
        self.bn2 = BatchNorm2d(out_chan)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = None
        if in_chan != out_chan or stride != 1:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_chan, out_chan,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(out_chan),
                )

    def forward(self, x):
        residual = self.conv1(x)
        residual = self.bn1(residual)
        residual = self.relu(residual)
        residual = self.conv2(residual)
        residual = self.bn2(residual)

        shortcut = x
        if self.downsample is not None:
            shortcut = self.downsample(x)

        out = shortcut + residual
        out = self.relu(out)
        return out


def create_layer_basic(in_chan, out_chan, bnum, stride=1):
    layers = [BasicBlock(in_chan, out_chan, stride=stride)]
    for i in range(bnum-1):
        layers.append(BasicBlock(out_chan, out_chan, stride=1))
    return nn.Sequential(*layers)


class Resnet18(nn.Module):
    def __init__(self):
        super(Resnet18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
        self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
        self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
        self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
        self.init_weight()

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        feat8 = self.layer2(x) # 1/8
        feat16 = self.layer3(feat8) # 1/16
        feat32 = self.layer4(feat16) # 1/32
        return feat8, feat16, feat32

    def init_weight(self):
        state_dict = modelzoo.load_url(resnet18_url)
        self_state_dict = self.state_dict()
        for k, v in state_dict.items():
            if 'fc' in k: continue
            self_state_dict.update({k: v})
        self.load_state_dict(self_state_dict)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params

BiSeNet


import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision

from .resnet import Resnet18

from torch.nn import BatchNorm2d


class ConvBNReLU(nn.Module):

    def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
        super(ConvBNReLU, self).__init__()
        self.conv = nn.Conv2d(in_chan,
                out_chan,
                kernel_size = ks,
                stride = stride,
                padding = padding,
                bias = False)
        self.bn = BatchNorm2d(out_chan)
        self.relu = nn.ReLU(inplace=True)
        self.init_weight()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)


class UpSample(nn.Module):

    def __init__(self, n_chan, factor=2):
        super(UpSample, self).__init__()
        out_chan = n_chan * factor * factor
        self.proj = nn.Conv2d(n_chan, out_chan, 1, 1, 0)
        self.up = nn.PixelShuffle(factor)
        self.init_weight()

    def forward(self, x):
        feat = self.proj(x)
        feat = self.up(feat)
        return feat

    def init_weight(self):
        nn.init.xavier_normal_(self.proj.weight, gain=1.)


class BiSeNetOutput(nn.Module):

    def __init__(self, in_chan, mid_chan, n_classes, up_factor=32, *args, **kwargs):
        super(BiSeNetOutput, self).__init__()
        self.up_factor = up_factor
        out_chan = n_classes
        self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
        self.conv_out = nn.Conv2d(mid_chan, out_chan, kernel_size=1, bias=True)
        self.up = nn.Upsample(scale_factor=up_factor,
                mode='bilinear', align_corners=False)
        self.init_weight()

    def forward(self, x):
        x = self.conv(x)
        x = self.conv_out(x)
        x = self.up(x)
        return x

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class AttentionRefinementModule(nn.Module):
    def __init__(self, in_chan, out_chan, *args, **kwargs):
        super(AttentionRefinementModule, self).__init__()
        self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
        self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
        self.bn_atten = BatchNorm2d(out_chan)
        #  self.sigmoid_atten = nn.Sigmoid()
        self.init_weight()

    def forward(self, x):
        feat = self.conv(x)
        atten = torch.mean(feat, dim=(2, 3), keepdim=True)
        atten = self.conv_atten(atten)
        atten = self.bn_atten(atten)
        #  atten = self.sigmoid_atten(atten)
        atten = atten.sigmoid()
        out = torch.mul(feat, atten)
        return out

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)


class ContextPath(nn.Module):
    def __init__(self, *args, **kwargs):
        super(ContextPath, self).__init__()
        self.resnet = Resnet18()
        self.arm16 = AttentionRefinementModule(256, 128)
        self.arm32 = AttentionRefinementModule(512, 128)
        self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
        self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
        self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
        self.up32 = nn.Upsample(scale_factor=2.)
        self.up16 = nn.Upsample(scale_factor=2.)

        self.init_weight()

    def forward(self, x):
        feat8, feat16, feat32 = self.resnet(x)

        avg = torch.mean(feat32, dim=(2, 3), keepdim=True)
        avg = self.conv_avg(avg)

        feat32_arm = self.arm32(feat32)
        feat32_sum = feat32_arm + avg
        feat32_up = self.up32(feat32_sum)
        feat32_up = self.conv_head32(feat32_up)

        feat16_arm = self.arm16(feat16)
        feat16_sum = feat16_arm + feat32_up
        feat16_up = self.up16(feat16_sum)
        feat16_up = self.conv_head16(feat16_up)

        return feat16_up, feat32_up # x8, x16

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class SpatialPath(nn.Module):
    def __init__(self, *args, **kwargs):
        super(SpatialPath, self).__init__()
        self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
        self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
        self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
        self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
        self.init_weight()

    def forward(self, x):
        feat = self.conv1(x)
        feat = self.conv2(feat)
        feat = self.conv3(feat)
        feat = self.conv_out(feat)
        return feat

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class FeatureFusionModule(nn.Module):
    def __init__(self, in_chan, out_chan, *args, **kwargs):
        super(FeatureFusionModule, self).__init__()
        self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
        ## use conv-bn instead of 2 layer mlp, so that tensorrt 7.2.3.4 can work for fp16
        self.conv = nn.Conv2d(out_chan,
                out_chan,
                kernel_size = 1,
                stride = 1,
                padding = 0,
                bias = False)
        self.bn = nn.BatchNorm2d(out_chan)
        #  self.conv1 = nn.Conv2d(out_chan,
        #          out_chan//4,
        #          kernel_size = 1,
        #          stride = 1,
        #          padding = 0,
        #          bias = False)
        #  self.conv2 = nn.Conv2d(out_chan//4,
        #          out_chan,
        #          kernel_size = 1,
        #          stride = 1,
        #          padding = 0,
        #          bias = False)
        #  self.relu = nn.ReLU(inplace=True)
        self.init_weight()

    def forward(self, fsp, fcp):
        fcat = torch.cat([fsp, fcp], dim=1)
        feat = self.convblk(fcat)
        atten = torch.mean(feat, dim=(2, 3), keepdim=True)
        atten = self.conv(atten)
        atten = self.bn(atten)
        #  atten = self.conv1(atten)
        #  atten = self.relu(atten)
        #  atten = self.conv2(atten)
        atten = atten.sigmoid()
        feat_atten = torch.mul(feat, atten)
        feat_out = feat_atten + feat
        return feat_out

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params = [], []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                wd_params.append(module.weight)
                if not module.bias is None:
                    nowd_params.append(module.bias)
            elif isinstance(module, nn.modules.batchnorm._BatchNorm):
                nowd_params += list(module.parameters())
        return wd_params, nowd_params


class BiSeNetV1(nn.Module):

    def __init__(self, n_classes, aux_mode='train', *args, **kwargs):
        super(BiSeNetV1, self).__init__()
        self.cp = ContextPath()
        self.sp = SpatialPath()
        self.ffm = FeatureFusionModule(256, 256)
        self.conv_out = BiSeNetOutput(256, 256, n_classes, up_factor=8)
        self.aux_mode = aux_mode
        if self.aux_mode == 'train':
            self.conv_out16 = BiSeNetOutput(128, 64, n_classes, up_factor=8)
            self.conv_out32 = BiSeNetOutput(128, 64, n_classes, up_factor=16)
        self.init_weight()

    def forward(self, x):
        H, W = x.size()[2:]
        feat_cp8, feat_cp16 = self.cp(x)
        feat_sp = self.sp(x)
        feat_fuse = self.ffm(feat_sp, feat_cp8)

        feat_out = self.conv_out(feat_fuse)
        if self.aux_mode == 'train':
            feat_out16 = self.conv_out16(feat_cp8)
            feat_out32 = self.conv_out32(feat_cp16)
            return feat_out, feat_out16, feat_out32
        elif self.aux_mode == 'eval':
            return feat_out,
        elif self.aux_mode == 'pred':
            feat_out = feat_out.argmax(dim=1)
            return feat_out
        else:
            raise NotImplementedError

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None: nn.init.constant_(ly.bias, 0)

    def get_params(self):
        wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
        for name, child in self.named_children():
            child_wd_params, child_nowd_params = child.get_params()
            if isinstance(child, (FeatureFusionModule, BiSeNetOutput)):
                lr_mul_wd_params += child_wd_params
                lr_mul_nowd_params += child_nowd_params
            else:
                wd_params += child_wd_params
                nowd_params += child_nowd_params
        return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params

训练过程精度变化

alt

测试精度

alt

结果展示

alt

总结

今天的分享到此结束,感兴趣的点点关注,后续将分享更多案例。

参考资料

[1]

WHDLD: https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0

[2]

BiSeNet: https://arxiv.org/abs/1808.00897

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/206312.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity中Batching优化的GPU实例化(2)

文章目录 前言一、GPU实例化的Shader准备步骤1、在Pass中声明实例化需要的变体2、UNITY_VERTEX_INPUT_INSTANCE_ID 在顶点着色器的输入(appdata)和输出(v2f可选)中添加(uint instanceID : SV_InstanceID). 前言 在上篇文章中,我们做了一些GPU实例化的前置准备&…

有个死鬼一直刷咱们接口,用`手机号+验证码`在那乱撞!

作者:小傅哥 博客:https://bugstack.cn 沉淀、分享、成长,让自己和他人都能有所收获!😄 本文的宗旨在于通过对实际场景的案例进行抽复现,教会读者如何对应用的接口以浏览器指纹ID为维度的限流操作&#xff…

CentOS 7.9 安装 k8s(详细教程)

文章目录 安装步骤安装前准备事项安装docker准备环境安装kubelet、kubeadm、kubectl初始化master节点安装网络插件calicowork 加入集群 k8s集群测试 安装步骤 安装前准备事项 一台或多台机器,操作系统 CentOS7.x-86_x64硬件配置:2GB或更多RAM&#xff0…

配置禁止BT下载的示例

如图1所示,企业内用户通过交换机连接到RouterA的Eth2/0/0,并通过RouterA的GE0/0/1接口连接到WAN侧网络。 现在要求在RouterA上通过配置基于智能应用控制SAC(Smart Application Control)的流分类,禁止企业用户进行BT下载。 图1 配置禁止BT下载的组网图: 操作步骤 1.Rout…

爬虫解析-jsonpath (六)

jsonpath只能解析本地文件 jsonpath的使用: obj json.load(open(.json文件,r,encodingutf-8))place_name jsonpath.jsonpath(obj, json语法) 目录 1.安装jsonpath 2.Xpath和jsonpath的语法对比 练习:使用jsonpath解析JSON文件 3.使用jsonpath抓取…

Vue + Element 实现按钮指定间隔时间点击

1、业务需求 需要加一个按钮&#xff0c;调用第三方API&#xff0c;按钮十分钟之内只能点击一次&#xff0c;刷新页面也只能点击一次 2、思路 加一个本地缓存的时间戳&#xff0c;通过时间戳计算指定时间内不能点击按钮 3、实现 1&#xff09;vue页面 <template>&l…

/proc/sys/net/ipv4/ 下网络参数的理解

/proc/sys/net/ipv4/下文件详细解释&#xff1a; /proc/sys/net/ipv4/下文件 /proc/sys/net/ipv4/ip_forward 该文件表示是否打开IP转发。 0&#xff0c;禁止 1&#xff0c;转发 基本用途&#xff1a;如VPN、路由产品的利用&#xff1b; 出于安全考虑&#xff0c;Linux系…

4.Java程序设计-基于springboot得在线考试系统

编程技术交流、源码分享、模板分享、网课分享 企鹅&#x1f427;裙&#xff1a;772162324 摘要&#xff1a; 本文设计并实现了一款基于Spring Boot框架的在线考试系统小程序。随着远程学习和在线教育的普及&#xff0c;对于灵活、便捷的在线考试系统的需求逐渐增加。该小程序…

QT 重定向qdebug输出到自绘界面

因为在嵌入式中调试qt需要查看输出信息,特意写了一个类用户便捷查看qdebug信息 界面如下: 提供了开始,停止,保存,清空,退出功能,具体代码下文给出 文件如下 #ifndef QDEBUGREDIRECT_H #define QDEBUGREDIRECT_H /**qdebug 重定向类 定向到界面控件*李吉磊 2023.12.7* */#in…

指针(四)

因为前期在学驱动&#xff0c;所以花了一天时间借鉴了别的资料&#xff0c;把本科学的C语言捡起来。 指针的基本概念 堆栈有栈顶指针&#xff0c;队列有头指针和尾指针&#xff0c;这些概念中的"指针"本质上是一个整数&#xff0c;是数组的索引&#xff0c;通过指针…

CnetSDK .NET OCR Library SDK Crack

CnetSDK .NET OCR Library SDK Crack CnetSDK .NET OCR Library SDK 是一款高精度 .NET OCR 扫描仪软件&#xff0c;用于从图像中识别字符&#xff0c;如文本、手写和符号。该.NET OCR库软件采用Tesseract OCR引擎技术&#xff0c;将字符识别准确率提高高达99%。通过将 .NET OC…

C++【智能指针】

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析&#xff08;3&#xff09; 目录 &#x1f449;&#x1f3fb;为什么需要智能指针&#x…

实验3.5 路由器的单臂路由配置

实验3.5 路由器的单臂路由配置 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.SWA的基本配置2.RA的基本配置3.在RA上查看接口状态 六、任务验收七、任务小结 一、任务描述 某公司对部门划分了需VLAN之后&#xff0c;发现两个部门之间无法通信&#xff0c;但…

机器学习——logistic回归

目录 一、线性模型与回归 二、基于logistic回归和Sigmoid函数的分类 三、最优化算法 1. 最大似然估计 2. 梯度上升法 3. 训练算法&#xff1a;梯度上升 4. 绘制决策边界 5. 训练算法&#xff1a;随机梯度上升 6. 改进的随机梯度算法 四、从疝气病症预测病马的死亡率 …

在jupyter notebook中修改其他文件的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

力扣题:数字与字符串间转换-12.8

力扣题-12.8 [力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 力扣题1&#xff1a;299. 猜数字游戏 解题思想&#xff1a;进行遍历&#xff0c;统计完全相同的数字和不相同的数字即可&#xff0c;然后统计不相同的数字在秘密数字和猜测数字中共同出现的次数 class Sol…

Kubernetes(K8s 1.27.x) 快速上手+实践,无废话纯享版(视频笔记)

视频源&#xff1a;1.03-k8s是什么&#xff1f;_哔哩哔哩_bilibili 1 基础知识 1.1 K8s 有用么&#xff1f; K8s有没有用 K8s要不要学&#xff1f; 参考资料: https://www.infoq.com/articles/devops-and-cloud-trends-2022/?itm_sourcearticles_about_InfoQ-trends-report…

SSL证书代理

众所周知&#xff0c;SSL证书已经成为当下网络安全中不可或缺的一个环节&#xff0c;对于很多开发公司来说&#xff0c;给自己的客户提供SSL证书安全服务也是最为基础的。 但是目前市面上像阿里云之类的证书服务商对于开发公司需要的证书并没有太大的一个优惠政策&#xff0c;给…

MySQL老是卸载不干净,不会删除注册表,安装总是报错

给大家推荐一款非常使用的工具 geek点击官网下载。 安装完成主页就长这样&#xff1a; 右键点击你要删除的MySQL卸载即可。自动帮你清空注册表等信息。 谁用谁知道&#xff01;&#xff01;&#xff01; 用了感觉不错的话记得回来给我点赞加评论哦&#xff01;&#xff01;&…

JVM 运行时参数

面试题 JVM的参数&#xff0c;你知道的说一下 (百度) 说说你知道的几种主要的JVM参数&#xff08;京东&#xff09; JVM调优调的哪些参数&#xff1f;在哪里写这些参数&#xff1f; &#xff08;亚信&#xff09; 内存调优参数都有什么&#xff1f;&am…