RocketMQ-RocketMQ高性能核心原理与源码剖析(中)

二.小试牛刀阶段

​ 开始理解一些比较简单的业务逻辑

3、Netty服务注册框架

1、关注重点

​ 网络通信服务是构建分布式应用的基础,也是我们去理解RocketMQ底层业务的基础。这里就重点梳理RocketMQ的这个服务注册框架,理解各个业务进程之间是如何进行RPC远程通信的。

​ Netty的所有远程通信功能都由remoting模块实现。RemotingServer模块里包含了RPC的服务端RemotingServer以及客户端RemotingClient。在RocketMQ中,涉及到的远程服务非常多,在RocketMQ中,NameServer主要是RPC的服务端RemotingServer,Broker对于客户端来说,是RPC的服务端RemotingServer,而对于NameServer来说,又是RPC的客户端。各种Client是RPC的客户端RemotingClient。

​ 需要理解的是,RocketMQ基于Netty保持客户端与服务端的长连接Channel。只要Channel是稳定的,那么即可以从客户端发请求到服务端,同样服务端也可以发请求到客户端。例如在事务消息场景中,就需要Broker多次主动向Producer发送请求确认事务的状态。所以,RemotingServer和RemotingClient都需要注册自己的服务。

2、源码重点

​ 1、哪些组件需要Netty服务端?哪些组件需要Netty客户端? 比较好理解的,NameServer需要NettyServer。客户端,Producer和Consuer,需要NettyClient。Broker需要NettyServer响应客户端请求,需要NettyClient向NameServer注册心跳。但是有个问题, 事务消息的Producer也需要响应Broker的事务状态回查,他需要NettyServer吗?

NameServer不需要NettyClient,这也验证了之前介绍的NameServer之间不需要进行数据同步的说法。

​ 2、所有的RPC请求数据都封账成RemotingCommand对象。而每个处理消息的服务逻辑,都会封装成一个NettyRequestProcessor对象。

​ 3、服务端和客户端都维护一个processorTable,这是个HashMapkey是服务码requestCode,value是对应的运行单元 Pair<NettyRequestProcessor,ExecutorService>类型,包含了处理Processor和执行线程的线程池。具体的Processor,由业务系统自行注册。Broker服务注册见,BrokerController.registerProcessor(),客户端的服务注册见MQClientAPIImpl。NameServer则会注册一个大的DefaultRequestProcessor,统一处理所有服务。

​ 4、请求类型分为REQUEST和RESPONSE。这是为了支持异步的RPC调用。NettyServer处理完请求后,可以先缓存到responseTable中,等NettyClient下次来获取,这样就不用阻塞Channel了,可以提升请求吞吐量。猜一猜Producer的同步请求的流程是什么样的?

​ 5、重点理解remoting包中是如何实现全流程异步化。

整体RPC框架流程如下图:

image.png

RocketMQ使用Netty框架提供了一套基于服务码的服务注册机制,让各种不同的组件都可以按照自己的需求,注册自己的服务方法。RocketMQ的这一套服务注册机制,是非常简洁使用的。在使用Netty进行其他相关应用开发时,都可以借鉴他的这一套服务注册机制。例如要开发一个大型的IM项目,要加减好友、发送文本,图片,甚至红包、维护群聊信息等等各种各样的请求,这些请求如何封装,就可以很好的参考这个框架。

3、关于RocketMQ的同步结果推送与异步结果推送

RocketMQ的RemotingServer服务端,会维护一个responseTable,这是一个线程同步的Map结构。 key为请求的ID,value是异步的消息结果。ConcurrentMap<Integer /* opaque */, ResponseFuture> 。

​ 处理同步请求(NettyRemotingAbstract#invokeSyncImpl)时,处理的结果会存入responseTable,通过ResponseFuture提供一定的服务端异步处理支持,提升服务端的吞吐量。 请求返回后,立即从responseTable中移除请求记录。

​ 实际上,同步也是通过异步实现的。

//org.apache.rocketmq.remoting.netty.ResponseFuture//发送消息后,通过countDownLatch阻塞当前线程,造成同步等待的效果。public RemotingCommand waitResponse(final long timeoutMillis) throws InterruptedException {this.countDownLatch.await(timeoutMillis, TimeUnit.MILLISECONDS);return this.responseCommand;}//等待异步获取到消息后,再通过countDownLatch释放当前线程。public void putResponse(final RemotingCommand responseCommand) {this.responseCommand = responseCommand;this.countDownLatch.countDown();}

​ 处理异步请求(NettyRemotingAbstract#invokeAsyncImpl)时,处理的结果依然会存入responsTable,等待客户端后续再来请求结果。但是他保存的依然是一个ResponseFuture,也就是在客户端请求结果时再去获取真正的结果。 另外,在RemotingServer启动时,会启动一个定时的线程任务,不断扫描responseTable,将其中过期的response清除掉。

//org.apache.rocketmq.remoting.netty.NettyRemotingServer
this.timer.scheduleAtFixedRate(new TimerTask() {@Overridepublic void run() {try {NettyRemotingServer.this.scanResponseTable();} catch (Throwable e) {log.error("scanResponseTable exception", e);}}}, 1000 * 3, 1000);

4、Broker心跳注册管理

1、关注重点

​ 之前介绍过,Broker会在启动时向所有NameServer注册自己的服务信息,并且会定时往NameServer发送心跳信息。而NameServer会维护Broker的路由列表,并对路由表进行实时更新。这一轮就重点梳理这个过程。

2、源码重点

​ Broker启动后会立即发起向NameServer注册心跳。方法入口:BrokerController.this.registerBrokerAll。 然后启动一个定时任务,以10秒延迟,默认30秒的间隔持续向NameServer发送心跳。

​ NameServer内部会通过RouteInfoManager组件及时维护Broker信息。同时在NameServer启动时,会启动定时任务,扫描不活动的Broker。方法入口:NamesrvController.initialize方法。

image.png

3、极简化的服务注册发现流程

​ 为什么RocketMQ要自己实现一个NameServer,而不用Zookeeper、Nacos这样现成的注册中心?

​ 首先,依赖外部组件会对产品的独立性形成侵入,不利于自己的版本演进。Kafka要抛弃Zookeeper就是一个先例。

​ 另外,其实更重要的还是对业务的合理设计。NameServer之间不进行信息同步,而是依赖Broker端向所有NameServer同时发起注册。这让NameServer的服务可以非常轻量。如果可能,你可以与Nacos或Zookeeper的核心流程做下对比。

​ 但是,要知道,这种极简的设计,其实是以牺牲数据一致性为代价的。Broker往多个NameServer同时发起注册,有可能部分NameServer注册成功,而部分NameServer注册失败了。这样,多个NameServer之间的数据是不一致的。作为注册中心,这是不可接受的。但是对于RocketMQ,这又变得可以接受了。因为客户端从NameServer上获得的,只要有一个正常运行的Broker就可以了,并不需要完整的Broker列表。

5、Producer发送消息过程

1、关注重点

首先:回顾下我们之前的Producer使用案例。

Producer有两种:

  • 一种是普通发送者:DefaultMQProducer。只负责发送消息,发送完消息,就可以停止了。
  • 另一种是事务消息发送者: TransactionMQProducer。支持事务消息机制。需要在事务消息过程中提供事务状态确认的服务,这就要求事务消息发送者虽然是一个客户端,但是也要完成整个事务消息的确认机制后才能退出。

​ 事务消息机制后面将结合Broker进行整理分析。这一步暂不关注。我们只关注DefaultMQProducer的消息发送过程。

然后:整个Producer的使用流程,大致分为两个步骤:一是调用start方法,进行一大堆的准备工作。 二是各种send方法,进行消息发送。

​ 那我们重点关注以下几个问题:

1、Producer启动过程中启动了哪些服务

2、Producer如何管理broker路由信息。 可以设想一下,如果Producer启动了之后,NameServer挂了,那么Producer还能不能发送消息?希望你先从源码中进行猜想,然后自己设计实验进行验证。

3、关于Producer的负载均衡。也就是Producer到底将消息发到哪个MessageQueue中。这里可以结合顺序消息机制来理解一下。消息中那个莫名奇妙的MessageSelector到底是如何工作的。

2、源码重点

1、Producer的核心启动流程

​ 所有Producer的启动过程,最终都会调用到DefaultMQProducerImpl#start方法。在start方法中的通过一个mQClientFactory对象,启动生产者的一大堆重要服务。

​ 这里其实就是一种设计模式,虽然有很多种不同的客户端,但是这些客户端的启动流程最终都是统一的,全是交由mQClientFactory对象来启动。而不同之处在于这些客户端在启动过程中,按照服务端的要求注册不同的信息。例如生产者注册到producerTable,消费者注册到consumerTable,管理控制端注册到adminExtTable

image.png

2、发送消息的核心流程

​ 核心流程如下:

image.png

​ 1、发送消息时,会维护一个本地的topicPublishInfoTable缓存,DefaultMQProducer会尽量保证这个缓存数据是最新的。但是,如果NameServer挂了,那么DefaultMQProducer还是会基于这个本地缓存去找Broker。只要能找到Broker,还是可以正常发送消息到Broker的。 --可以在生产者示例中,start后打一个断点,然后把NameServer停掉,这时,Producer还是可以发送消息的。

​ 2、生产者如何找MessageQueue: 默认情况下,生产者是按照轮训的方式,依次轮训各个MessageQueue。但是如果某一次往一个Broker发送请求失败后,下一次就会跳过这个Broker

 //org.apache.rocketmq.client.impl.producer.TopicPublishInfo//如果进到这里lastBrokerName不为空,那么表示上一次向这个Broker发送消息是失败的,这时就尽量不要再往这个Broker发送消息了。public MessageQueue selectOneMessageQueue(final String lastBrokerName) {if (lastBrokerName == null) {return selectOneMessageQueue();} else {for (int i = 0; i < this.messageQueueList.size(); i++) {int index = this.sendWhichQueue.incrementAndGet();int pos = Math.abs(index) % this.messageQueueList.size();if (pos < 0)pos = 0;MessageQueue mq = this.messageQueueList.get(pos);if (!mq.getBrokerName().equals(lastBrokerName)) {return mq;}}return selectOneMessageQueue();}}

​ 3、如果在发送消息时传了Selector,那么Producer就不会走这个负载均衡的逻辑,而是会使用Selector去寻找一个队列。 具体参见org.apache.rocketmq.client.impl.producer.DefaultMQProducerImpl#sendSelectImpl 方法。

6、Consumer拉取消息过程

1、关注重点

结合我们之前的示例,回顾下消费者这一块的几个重点问题:

  • 消费者也是有两种,推模式消费者和拉模式消费者。优秀的MQ产品都会有一个高级的目标,就是要提升整个消息处理的性能。而要提升性能,服务端的优化手段往往不够直接,最为直接的优化手段就是对消费者进行优化。所以在RocketMQ中,整个消费者的业务逻辑是非常复杂的,甚至某种程度上来说,比服务端更复杂,所以,在这里我们重点关注用得最多的推模式的消费者。

  • 消费者组之间有集群模式和广播模式两种消费模式。我们就要了解下这两种集群模式是如何做的逻辑封装。

  • 然后我们关注下消费者端的负载均衡的原理。即消费者是如何绑定消费队列的,哪些消费策略到底是如何落地的。

  • 最后我们来关注下在推模式的消费者中,MessageListenerConcurrently 和MessageListenerOrderly这两种消息监听器的处理逻辑到底有什么不同,为什么后者能保持消息顺序。

2、源码重点

​ Consumer的核心启动过程和Producer是一样的, 最终都是通过mQClientFactory对象启动。不过之间添加了一些注册信息。整体的启动过程如下:

image.png

3、广播模式与集群模式的Offset处理

在DefaultMQPushConsumerImpl的start方法中,启动了非常多的核心服务。 比如,对于广播模式与集群模式的Offset处理

 if (this.defaultMQPushConsumer.getOffsetStore() != null) {this.offsetStore = this.defaultMQPushConsumer.getOffsetStore();} else {switch (this.defaultMQPushConsumer.getMessageModel()) {case BROADCASTING:this.offsetStore = new LocalFileOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());break;case CLUSTERING:this.offsetStore = new RemoteBrokerOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());break;default:break;}this.defaultMQPushConsumer.setOffsetStore(this.offsetStore);}this.offsetStore.load();

​ 可以看到,广播模式是使用LocalFileOffsetStore,在Consumer本地保存Offset,而集群模式是使用RemoteBrokerOffsetStore,在Broker端远程保存offset。而这两种Offset的存储方式,最终都是通过维护本地的offsetTable缓存来管理Offset。

4、Consumer与MessageQueue建立绑定关系

​ start方法中还一个比较重要的东西是给rebalanceImpl设定了一个AllocateMessageQueueStrategy,用来给Consumer分配MessageQueue的。

this.rebalanceImpl.setMessageModel(this.defaultMQPushConsumer.getMessageModel());
//Consumer负载均衡策略
this.rebalanceImpl.setAllocateMessageQueueStrategy(this.defaultMQPushConsumer.getAllocateMessageQueueStrategy());

​ 这个AllocateMessageQueueStrategy就是用来给Consumer和MessageQueue之间建立一种对应关系的。也就是说,只要Topic当中的MessageQueue以及同一个ConsumerGroup中的Consumer实例都没有变动,那么某一个Consumer实例只是消费固定的一个或多个MessageQueue上的消息,其他Consumer不会来抢这个Consumer对应的MessageQueue。

​ 关于负载均衡机制,会在后面结合Producer的发送消息策略一起总结。不过这里,你可以想一下为什么要让一个MessageQueue只能由同一个ConsumerGroup中的一个Consumer实例来消费。

​ 其实原因很简单,因为Broker需要按照ConsumerGroup管理每个MessageQueue上的Offset,如果一个MessageQueue上有多个同属一个ConsumerGroup的Consumer实例,他们的处理进度就会不一样。这样的话,Offset就乱套了。

5、顺序消费与并发消费

​ 同样在start方法中,启动了consumerMessageService线程,进行消息拉取。

   //Consumer中自行指定的回调函数。if (this.getMessageListenerInner() instanceof MessageListenerOrderly) {this.consumeOrderly = true;this.consumeMessageService =new ConsumeMessageOrderlyService(this, (MessageListenerOrderly) this.getMessageListenerInner());} else if (this.getMessageListenerInner() instanceof MessageListenerConcurrently) {this.consumeOrderly = false;this.consumeMessageService =new ConsumeMessageConcurrentlyService(this, (MessageListenerConcurrently) this.getMessageListenerInner());}

​ 可以看到, Consumer通过registerMessageListener方法指定的回调函数,都被封装成了ConsumerMessageService的子实现类。

​ 而对于这两个服务实现类的调用,会延续到DefaultMQPushConsumerImpl的pullCallback对象中。也就是Consumer每拉过来一批消息后,就向Broker提交下一个拉取消息的的请求。

这里也可以印证一个点,就是顺序消息,只对异步消费也就是推模式有效。同步消费的拉模式是无法进行顺序消费的。因为这个pullCallback对象,在拉模式的同步消费时,根本就没有往下传。

当然,这并不是说拉模式不能锁定队列进行顺序消费,拉模式在Consumer端应用就可以指定从哪个队列上拿消息。

 PullCallback pullCallback = new PullCallback() {@Overridepublic void onSuccess(PullResult pullResult) {if (pullResult != null) {//...switch (pullResult.getPullStatus()) {case FOUND://...DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest(pullResult.getMsgFoundList(),processQueue,pullRequest.getMessageQueue(),dispatchToConsume);//... break;//...}}}

​ 而这里提交的,实际上是一个ConsumeRequest线程。而提交的这个ConsumeRequest线程,在两个不同的ConsumerService中有不同的实现。

​ 这其中,两者最为核心的区别在于ConsumerMessageOrderlyService是锁定了一个队列,处理完了之后,再消费下一个队列。

 public void run() {// ....final Object objLock = messageQueueLock.fetchLockObject(this.messageQueue);synchronized (objLock) {//....}}

​ 为什么给队列加个锁,就能保证顺序消费呢?结合顺序消息的实现机制理解一下。

image.png

​ 从源码中可以看到,Consumer提交请求时,都是往线程池里异步提交的请求。如果不加队列锁,那么就算Consumer提交针对同一个MessageQueue的拉取消息请求,这些请求都是异步执行,他们的返回顺序是乱的,无法进行控制。给队列加个锁之后,就保证了针对同一个队列的第二个请求,必须等第一个请求处理完了之后,释放了锁,才可以提交。这也是在异步情况下保证顺序的基础思路。

6、实际拉取消息还是通过PullMessageService完成的。

​ start方法中,相当于对很多消费者的服务进行初始化,包括指定一些服务的实现类,以及启动一些定时的任务线程,比如清理过期的请求缓存等。最后,会随着mQClientFactory组件的启动,启动一个PullMessageService。实际的消息拉取都交由PullMesasgeService进行。

​ 所谓消息推模式,其实还是通过Consumer拉消息实现的。

 //org.apache.rocketmq.client.impl.consumer.PullMessageServiceprivate void pullMessage(final PullRequest pullRequest) {final MQConsumerInner consumer = this.mQClientFactory.selectConsumer(pullRequest.getConsumerGroup());if (consumer != null) {DefaultMQPushConsumerImpl impl = (DefaultMQPushConsumerImpl) consumer;impl.pullMessage(pullRequest);} else {log.warn("No matched consumer for the PullRequest {}, drop it", pullRequest);}}

7、客户端负载均衡管理总结

​ 从之前Producer发送消息的过程以及Conmer拉取消息的过程,我们可以抽象出RocketMQ中一个消息分配的管理模型。这个模型是我们在使用RocketMQ时,很重要的进行性能优化的依据。

1 Producer负载均衡

​ Producer发送消息时,默认会轮询目标Topic下的所有MessageQueue,并采用递增取模的方式往不同的MessageQueue上发送消息,以达到让消息平均落在不同的queue上的目的。而由于MessageQueue是分布在不同的Broker上的,所以消息也会发送到不同的broker上。

​ 在之前源码中看到过,Producer轮训时,如果发现往某一个Broker上发送消息失败了,那么下一次会尽量避免再往同一个Broker上发送消息。但是,如果你的应用场景允许发送消息长延迟,也可以给Producer设定setSendLatencyFaultEnable(true)。这样对于某些Broker集群的网络不是很好的环境,可以提高消息发送成功的几率。

image.png

​ 同时生产者在发送消息时,可以指定一个MessageQueueSelector。通过这个对象来将消息发送到自己指定的MessageQueue上。这样可以保证消息局部有序。

2 Consumer负载均衡

​ Consumer也是以MessageQueue为单位来进行负载均衡。分为集群模式和广播模式。

1、集群模式

​ 在集群消费模式下,每条消息只需要投递到订阅这个topic的Consumer Group下的一个实例即可。RocketMQ采用主动拉取的方式拉取并消费消息,在拉取的时候需要明确指定拉取哪一条message queue。

​ 而每当实例的数量有变更,都会触发一次所有实例的负载均衡,这时候会按照queue的数量和实例的数量平均分配queue给每个实例。

​ 每次分配时,都会将MessageQueue和消费者ID进行排序后,再用不同的分配算法进行分配。内置的分配的算法共有六种,分别对应AllocateMessageQueueStrategy下的六种实现类,可以在consumer中直接set来指定。默认情况下使用的是最简单的平均分配策略。

  • AllocateMachineRoomNearby: 将同机房的Consumer和Broker优先分配在一起。

​ 这个策略可以通过一个machineRoomResolver对象来定制Consumer和Broker的机房解析规则。然后还需要引入另外一个分配策略来对同机房的Broker和Consumer进行分配。一般也就用简单的平均分配策略或者轮询分配策略。

感觉这东西挺鸡肋的,直接给个属性指定机房不是挺好的吗。

​ 源码中有测试代码AllocateMachineRoomNearByTest。

​ 在示例中:Broker的机房指定方式: messageQueue.getBrokerName().split("-")[0],而Consumer的机房指定方式:clientID.split("-")[0]

​ clinetID的构建方式:见ClientConfig.buildMQClientId方法。按他的测试代码应该是要把clientIP指定为IDC1-CID-0这样的形式。

  • AllocateMessageQueueAveragely:平均分配。将所有MessageQueue平均分给每一个消费者

  • AllocateMessageQueueAveragelyByCircle: 轮询分配。轮流的给一个消费者分配一个MessageQueue。

  • AllocateMessageQueueByConfig: 不分配,直接指定一个messageQueue列表。类似于广播模式,直接指定所有队列。

  • AllocateMessageQueueByMachineRoom:按逻辑机房的概念进行分配。又是对BrokerName和ConsumerIdc有定制化的配置。

  • AllocateMessageQueueConsistentHash。源码中有测试代码AllocateMessageQueueConsitentHashTest。这个一致性哈希策略只需要指定一个虚拟节点数,是用的一个哈希环的算法,虚拟节点是为了让Hash数据在换上分布更为均匀。

最常用的就是平均分配和轮训分配了。例如平均分配时的分配情况是这样的:

image.png

​ 而轮训分配就不计算了,每次把一个队列分给下一个Consumer实例。

2、广播模式

​ 广播模式下,每一条消息都会投递给订阅了Topic的所有消费者实例,所以也就没有消息分配这一说。而在实现上,就是在Consumer分配Queue时,所有Consumer都分到所有的Queue。

​ 广播模式实现的关键是将消费者的消费偏移量不再保存到broker当中,而是保存到客户端当中,由客户端自行维护自己的消费偏移量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/206169.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python----多态

1、什么是多态 多态指的是一类事物有多种形态。 定义&#xff1a;多态是一种使用对象的方式&#xff0c;子类重写父类方法&#xff0c;调用不同子类对象的相同父类方法&#xff0c;可以产生不同的执行结果。 ① 多态依赖继承 ② 子类方法必须要重写父类方法 首先定义一个父类…

2.1 网络编程-多用户通信系统(用户登录、拉取在线用户、无异常退出)

文章目录 一、多用户通信系统1.1 介绍1.2 公共类1.2.1 封装消息类1.2.2 用户类1.2.3 消息类型类1.2.4 控制台读取内容 二、用户登录2.1 客户端2.1.1 菜单界面 QQView2.1.2 验证用户UserClientService2.1.3 线程类 ClientConnectServerThread2.1.4 线程集合类 2.2 服务端2.2.1 服…

【面试经典150 | 二叉树】从前序与中序遍历序列构造二叉树

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;递归 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带一些对于本题涉及到的数据结构等内容…

Jest与typescript单元测试

文章目录 前言安装配置.vscode/launch.jsonjest.config.tsts.config.ts 测试例子 前言 简单记录一下vscode里跑Jest单元测试。 安装 yarn add -D ts-jest ts-node types/jest jest 配置 .vscode/launch.json {"version": "0.2.0","configurations…

通过异步序列化提高图表性能 Diagramming for WPF

通过异步序列化提高图表性能 2023 年 12 月 6 日 MindFusion.Diagramming for WPF 4.0.0 添加了异步加载和保存文件的功能&#xff0c;从而提高了响应能力。 MindFusion.Diagramming for WPF 提供了一个全面的工具集&#xff0c;用于创建各种图表&#xff0c;包括组织结构图、图…

【Docker二】docker网络模式、网络通信、数据管理

目录 一、docker网络模式&#xff1a; 1、概述 2、docker网络实现原理&#xff1a; 3、docker的网络模式&#xff1a; 3.1、bridge模式&#xff1a; 3.2、host模式&#xff1a; 3.3、container模式&#xff1a; 3.4、none模式&#xff1a; 3.5、自定义网络模式&#xf…

shell命令学习(1)——(待完善)

explainshell.com shell统计当前文件夹下的文件个数、目录个数Linux之shell常用命令&#xff08;三&#xff09; sort&#xff08;排序&#xff09;、uniq&#xff08;处理重复字符&#xff09; linux中shell将换行输入到文件中 shell脚本&#xff0c;将多行内容写入文件中 f…

使用Python实现轮盘赌选择法Roulette Wheel Selection Method in Python

一、引言 最近在手写遗传算法&#xff0c;想尝试解决一些优化问题。然而&#xff0c;在编码的过程中&#xff0c;自己发现了很多都不懂的问题。比如&#xff0c;交叉的操作&#xff0c;有单点交叉、两点交叉和多点交叉&#xff0c;具体选哪一种会更好呢&#xff1f;未知。还有交…

读者和写者问题

它可以解决的问题&#xff1a; 可以支持多个读者访问&#xff0c;通过count计数 来实现多个读者访问的时候是互斥的&#xff0c;不会出现不符合进程同步的问题&#xff1a;设置mutex互斥锁&#xff0c;保证count或count--和if Pv(mutex)是一气呵成的 读写公平&#xff0c;通过…

C#大型LIS检验信息系统项目源码

LIS系统&#xff0c;一套医院检验科信息系统。它是以数据库为核心&#xff0c;将实验仪器与电脑连接成网&#xff0c;基础功能包括病人样本登录、实验数据存取、报告审核、打印分发等。除基础功能外&#xff0c;实验数据统计分析、质量控制管理、人员权限管理、试剂出入库等功能…

【深度学习】迁移学习中的领域转移及迁移学习的分类

领域转移 根据分布移位发生的具体部分&#xff0c;域移位可分为三种类型&#xff0c;包括协变量移位、先验移位和概念移位 协变量移位: 在协变量移位的情况下&#xff0c;源域和目标域的边际分布是不同的&#xff0c;即ps(x)∕ pt(x)&#xff0c;而给定x的y的后验分布在域之间…

SAP UI5 walkthrough step2 Bootstrap

我的理解&#xff0c;这就是一个引导指令 1.我们右键打开命令行--执行 ui5 use OpenUI5 2.执行命令&#xff1a;ui5 add sap.ui.core sap.m themelib_sap_horizon 执行完之后&#xff0c;会更新 yaml 文件 3.修改index.html <!DOCTYPE html> <html> <head&…

AR + 通信,虚实结合让工作协同从线上到「现场」

在数字经济无所不在的当下&#xff0c;千行百业都与数智化办公接轨并因其实现转型升级。关注【融云 RongCloud】&#xff0c;了解协同办公平台更多干货。 升级的背后&#xff0c;是利用技术把工作用更自然的方式连接起来&#xff0c;让整个工作流协同更顺、体验更好。 而其中…

小白备战蓝桥杯:Java常用API

目录 一、什么是API 二、API帮助文档的使用 三、String String中的成员方法都不会修改原字符串 String是啥&#xff1f; String常见构造方法 equals&#xff1a;字符串比较&#xff08;区分大小写&#xff09;​编辑 equalsIgnoreCase&#xff1a;字符串比较&#xff0…

【接口自动化测试入门】从0到1落地接口自动化测试!

前段时间写了一系列自动化测试相关的文章&#xff0c;当然更多的是方法和解决问题的思路角度去阐述我的一些观点。这篇文章来聊聊新手如何从零到一落地实践接口自动化测试。 为什么要做接口测试 测试理念的演变 早些时候&#xff0c;软件研发交付流程大多遵循V型或W型的瀑布…

Java se之类和对象

目录 类的定义格式如何去自定义this的引用如何初始化对象构造方法的定义和使用 类的定义格式 class ClassName{ //属性(成员变量) //行为(成员方法) } 1>变量与方法 1.成员变量:普通成员变量 静态成员变量 2.成员方法:普通成员方法 静态成员方法 其中的静态变量与方法,在后…

文件同步及实现简单监控

1. 软件简介 rsync rsync 是一款开源的、快速的、多功能的、可实现全量及增量的本地或远程 数据同步备份的优秀工具。在同步备份数据时&#xff0c;默认情况下&#xff0c;Rsync 通过其 独特的“quick check”算法&#xff0c;它仅同步大小或者最后修改时间发生变化的文 件或…

1146-table performance-schema.session_variables don‘t exits打卡navicat连接MySQL报错

navicat连接MySQL时报错&#xff1a; 管理员权限打开cmd 输入下面代码&#xff1a; mysql_upgrade -u root -p --force输入密码 然后就可以正常连接了。 mysql_upgrade检查所有数据库中与mysql服务器当前版本不兼容的所有表。 mysql_upgrade也会升级系统表&#xff0c;以便你…

学习spring、springmvc、mybatis、ssm所有可能用到的依赖总结,父工程pom文件依赖,<packaging>pom</packaging>

1、父工程pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/PO…

idea报错——Access denied for user ‘root‘@‘localhost‘ (using password: YES)

项目场景&#xff1a; 使用idea启动SpringBoot项目报错&#xff0c;可以根据提示看到是数据库的原因&#xff0c;显示使用了密码&#xff0c;具体报错信息如下&#xff1a; 解决方案&#xff1a; 第一步&#xff1a;先去配置文件里面查看连接MySQL的url是否正确&#xff0c;如果…