【动手学深度学习】(十)PyTorch 神经网络基础+GPU

文章目录

  • 一、层和块
    • 1.自定义块
    • 2.顺序块
    • 3.在前向传播函数中执行代码
  • 二、参数管理
    • 1.参数访问
    • 2.参数初始化
    • 3.参数绑定
  • 三、自定义层
    • 1.不带参数的层
    • 2.带参数的层
  • 四、读写文件
    • 1.加载和保存张量
    • 2.加载和保存模型参数
    • 五、使用GPU
  • [相关总结]
    • state_dict()

一、层和块

在这里插入图片描述
为了实现复杂神经网络块,引入了神经网络块的概念。使用块进行抽象的一个好处是可以将一些块组合成更大的组件。
从编程的角度来看,块由类表示。

import torch
from torch import nn
from torch.nn import functional as Fnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
# nn.Sequential定义了一种特殊的ModuleX = torch.rand(2, 20)
# print(X)
net(X)

tensor([[ 0.0479, 0.0093, -0.0509, 0.0863, -0.0410, -0.0043, -0.1234, -0.0119,
0.0347, -0.0381],
[ 0.1190, 0.0932, -0.0282, 0.2016, -0.0204, -0.0272, -0.1753, 0.0427,
-0.1553, -0.0589]], grad_fn=)

1.自定义块

每个块必须提供的基本功能:

  • 1.将输入数据作为其前向传播函数的参数。
  • 2.通过前向传播函数来生成输出
  • 3.计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  • 4.存储和访问前向传播计算所需的参数。
  • 5.根据需要初始化模型参数。

ex:编写块

class MLP(nn.Module):def __init__(self):# 用模型参数声明层super().__init__() #调用父类self.hidden = nn.Linear(20, 256) #隐藏层self.out = nn.Linear(256, 10) #输出层def forward(self, X):return self.out(F.relu(self.hidden(X)))#  实例化多层感知机的层, 然后在每次调用正向传播函数时调用这些层
net = MLP()
net(X)
tensor([[-0.1158, -0.1282, -0.1533,  0.0258,  0.0228,  0.0202, -0.0638, -0.1078,0.0511,  0.0913],[-0.1663, -0.0860, -0.2551,  0.1551, -0.0917, -0.0747, -0.2828, -0.2308,0.1149,  0.1360]], grad_fn=<AddmmBackward>)

2.顺序块

class MySequential(nn.Module):def __init__(self, *args):super().__init__()for block in args:
#             _module的类型是OrderedDictself._modules[block] = blockdef forward(self, X):
#       OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return Xnet = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。

3.在前向传播函数中执行代码

self.rand_weight在实例化中被随机初始化,之后为常量,因此它永远不会被反向传播

class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()
#       rand_weight不参加训练self.rand_weight = torch.rand((20, 20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)
#       将X和rand_weight做矩阵乘法X = F.relu(torch.mm(X, self.rand_weight) + 1)X = self.linear(X)while X.abs().sum() > 1:X /= 2
#       矩阵求和return X.sum()net = FixedHiddenMLP()
net(X)
tensor(-0.1869, grad_fn=<SumBackward0>)

混合搭配各种组合块

class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
tensor(-0.1363, grad_fn=<SumBackward0>)

二、参数管理

在选择了架构并设置完超参数后,我们就进入了训练阶段。此时,我们的目标是找到损失函数最小的模型参数值。

# 首先关注具有单隐层的多层感知机
import torch
from torch import nn
#                    net[0]           net[1]       net[2]
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
tensor([[ 0.0699],[-0.0591]], grad_fn=<AddmmBackward>)

1.参数访问

当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。 如下所示,我们可以检查第二个全连接层的参数

# net[2]为最后一个输出层
print(net[2].state_dict())

目标参数

# 目标参数
# 访问具体参数
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。

net[2].weight.grad == None
# 未进行反向传播,所以没有梯度
True

一次性访问所有参数

# 访问第一个全连接层的参数
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
# 访问所有层
print(*[(name, param.shape) for name, param in net.named_parameters()])
# ReLU没有参数
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
# net 根据名字获取参数
net.state_dict()['2.bias'].data
tensor([0.1021])

从嵌套块收集参数

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())
def block2():net = nn.Sequential()for i in range(4):
#       向nn.Sequential中添加4个block1net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
tensor([[-0.2192],[-0.2192]], grad_fn=<AddmmBackward>)
# 通过print了解网络结构
print(rgnet)
Sequential((0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))(1): Linear(in_features=4, out_features=1, bias=True)
)

2.参数初始化

1.内置初始化

# _:表示替换函数
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([0.0033, 0.0066, 0.0160, 0.0042]), tensor(0.))

我们还可以将所有参数初始化为给定的常数

def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([1., 1., 1., 1.]), tensor(0.))

对某些块应用不同的初始化方法

def xavier(m):if type(m) == nn.Linear:nn.init.xavier_normal(m.weight)def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([ 0.6464,  0.5056, -0.7737, -0.7057])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

2.自定义初始化
有时,深度学习框架没有需要的初始化方法,如下:
在这里插入图片描述

# 自定义初始化
def my_init(m):if type(m) == nn.Linear:print("Init",*[(name, param.shape) for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])
tensor([[-0.0000, -0.0000,  0.0000,  0.0000],[ 6.8114,  0.0000, -7.4551, -9.6630]], grad_fn=<SliceBackward>)

也可以直接设置参数

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

3.参数绑定

# 参数绑定
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), shared, nn.ReLU(), shared,nn.ReLU(), nn.Linear(8, 1))
net(X)
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

三、自定义层

1.不带参数的层

import torch
import torch.nn.functional as F
from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()def forward(self, X):return X - X.mean()layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
tensor([-2., -1.,  0.,  1.,  2.])

将层作为组件合并到更复杂的模型中

# 将层作为组件合并到构建更复杂的模型中
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())Y = net(torch.rand(4, 8))
# print(Y)
Y.mean()
tensor(3.2596e-09, grad_fn=<MeanBackward0>)

2.带参数的层

# 带参数的图层
class MyLinear(nn.Module):def __init__(self, in_units, units):super().__init__()self.weight = nn.Parameter(torch.randn(in_units, units))self.bias = nn.Parameter(torch.randn(units,))def forward(self, X):linear = torch.matmul(X, self.weight.data) + self.bias.datareturn F.relu(linear)dense = MyLinear(5, 3)
dense.weight
Parameter containing:
tensor([[ 0.7481,  0.6183,  0.0382],[ 0.6040,  2.3991,  1.3484],[-0.3165,  0.0117, -0.4763],[-1.3920,  0.6106,  0.9668],[ 1.4701,  0.3283, -2.1701]], requires_grad=True)
# 使用自定义层直接执行正向传播计算
dense(torch.rand(2,5))

tensor([[1.5235, 2.6890, 0.0000],
[0.9825, 0.3581, 0.0000]])

# 使用自定义层构建模型
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

tensor([[11.0573],
[25.9441]])

四、读写文件

有时我们希望保存训练的模型, 以备将来在各种环境中使用(比如在部署中进行预测)。 此外,当运行一个耗时较长的训练过程时, 最佳的做法是定期保存中间结果, 以确保在服务器电源被不小心断掉时,不会损失几天的计算结果。

1.加载和保存张量

单个张量:直接调用load和save进行读写,

# 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入
import torch
from torch import nn
from torch.nn import functional as Fx = torch.arange(4)
torch.save(x, 'x-file')
# 将存储在文件中的数据读回内存
x2 = torch.load('x-file')
x2

tensor([0, 1, 2, 3])
存储一个张量列表,读回内存

y = torch.zeros(4)
torch.save([x, y], 'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))

写入或读取从字符串映射到张量的字典

# 写入或读取从字符串映射到张量的字
# 读取或写入模型中的所有权重时,这很方便
mydict = {'x':x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

{‘x’: tensor([0, 1, 2, 3]), ‘y’: tensor([0., 0., 0., 0.])}

2.加载和保存模型参数

    # 深度学习框架提供了内置函数来保存和加载整个网络# 保存模型的参数而不是保存整个模型# 模型本身难以序列化,为了恢复模型,我们需要用代码生成架构class MLP(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(20, 256)self.output = nn.Linear(256, 10)def forward(self, x):return self.output(F.relu(self.hidden(x)))net = MLP()X = torch.randn(size=(2, 20))Y = net(X)

将模型的参数存储在一个叫做“mlp.params”的文件中

# print(net.state_dict())
torch.save(net.state_dict(), 'mlp.params')
# 恢复模型,我们需要实例化原始多层感知机模型的一个备份
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
# 从train模式调整为test模式
clone.eval()

MLP(
(hidden): Linear(in_features=20, out_features=256, bias=True)
(output): Linear(in_features=256, out_features=10, bias=True)
)

Y_clone = clone(X)
Y_clone == Y

tensor([[True, True, True, True, True, True, True, True, True, True],
[True, True, True, True, True, True, True, True, True, True]])

五、使用GPU

查看是否有GPU

!nvidia-smi

计算设备

import torch
from torch import nntorch.device('cpu'), torch.cuda.device('cuda')
(device(type='cpu'), <torch.cuda.device at 0x221b068ce50>)

查看可用gpu的数量

torch.cuda.device_count()

1

这两个函数允许我们在请求的GPU不存在的情况下运行代码

def try_gpu(i=0):  #@save"""如果存在,则返回gpu(i),否则返回cpu()"""if torch.cuda.device_count() >= i + 1:return torch.device(f'cuda:{i}')return torch.device('cpu')def try_all_gpus():  #@save"""返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""devices = [torch.device(f'cuda:{i}')for i in range(torch.cuda.device_count())]return devices if devices else [torch.device('cpu')]try_gpu(), try_gpu(10), try_all_gpus()

(device(type=‘cuda’, index=0),
device(type=‘cpu’),
[device(type=‘cuda’, index=0)])

查询张量所在的设备

x = torch.tensor([1, 2, 3])
x.device

device(type=‘cpu’)

# 存储在GPU上
X = torch.ones(2, 3, device=try_gpu())
X

tensor([[1., 1., 1.],
[1., 1., 1.]], device=‘cuda:0’)

# 第二个GPU上创建一个随机张量
Y = torch.rand(2, 3, device=try_gpu(1))
Y

tensor([[0.0755, 0.4800, 0.4188],
[0.7192, 0.1506, 0.8517]])

# 要计算X+Y,我们需要决定在哪里执行这个操作
Z = Y.cuda(0)
print(Y)
print(Z)

tensor([[0.0755, 0.4800, 0.4188],
[0.7192, 0.1506, 0.8517]])
tensor([[0.0755, 0.4800, 0.4188],
[0.7192, 0.1506, 0.8517]], device=‘cuda:0’)

# 现在数据在同一个GPU上,我们可以将它们相加
X + Z

tensor([[1.0755, 1.4800, 1.4188],
[1.7192, 1.1506, 1.8517]], device=‘cuda:0’)

Z.cuda(0) is Z

True

神经网络与GPU

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())net(X)

tensor([[0.7477],
[0.7477]], device=‘cuda:0’, grad_fn=)

# 确认模型参数存储在同一个GPU上
net[0].weight.data.device

device(type=‘cuda’, index=0)

[相关总结]

state_dict()

torch.nn.Module模块中的state_dict可以用来存放训练过程中需要学习的权重和偏执系数,(模型参数,超参数,优化器等的状态信息),但是需要注意只有具有学习参数的层才有,比如:卷积层和线性层等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/205932.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【EXCEL】offset函数

语法&#xff1a; offset(reference,row,column,[height],[width]) 例子&#xff1a;

【沐风老师】3dMax椅子建模教程

3dMax椅子建模详解 1.将系统单位设置为&#xff1a;毫米。在前视图创建一个矩形&#xff0c;并将四个角倒圆角。 2.开启二维图形可渲染功能&#xff0c;设置线条粗细。参数如图&#xff1a; 3.应用“FFD 2x2x2”修改器&#xff0c;在前视图中&#xff0c;选中右下角所有控制点&…

77. 组合

组合 描述 : 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 题目 : LeetCode 77. 组合 : 77. 组合 分析 : 请看回溯怎么回事 , 里面讲的很清晰 . 解析 ; class Solution {public List<List<Integ…

分布式搜索引擎03

1.数据聚合 聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近…

Zookeeper单机模式搭建

1、下载 ​wget https://dlcdn.apache.org/zookeeper/zookeeper-3.6.3/apache-zookeeper-3.6.3-bin.tar.gz 2、解压 tar -zxvf apache-zookeeper-3.6.3-bin.tar.gz 3、进入 apache-zookeeper-3.6.3-bin目录下&#xff0c;创建data cd apache-zookeeper-3.6.3-bin mkdir da…

Matlab 用矩阵画图

文章目录 Part.I IntroductionChap.I 预备知识Chap.II 概要Chap.III 杂记 Part.II 用矩阵画图Chap.I 摸索过程Chap.II 绘制专业图Chap.III 矩阵转tiff Part.I Introduction 本文汇总了 Matlab 用矩阵画图的几种方式。 Chap.I 预备知识 关于 *.mat 文件 *.mat文件是 matlab 的…

如何加快网络攻击发现速度

网络攻击可能会摧毁受害者。例如&#xff0c;米高梅度假村 (MGM Resorts) 预计将因 9 月份的网络攻击而遭受 1 亿美元的损失。 鲜为人知的是&#xff0c;在许多情况下&#xff0c;借助网络攻击发现可以预防网络攻击或将其消灭在萌芽状态。 威胁行为者变得越来越复杂&#xff…

网络管理相关

管理功能分为管理站manager和代理agent两部分。 网络管理&#xff1a; 网络管理系统中&#xff0c;每一个网络节点都包含有一组与管理有关的软件&#xff0c;叫做网络管理实体NME。 管理站的另外一组软件叫做网络管理应用NMA&#xff0c;提供用户接口&#xff0c;根据用户命令显…

2021年第十届数学建模国际赛小美赛B题疾病传播的风险解题全过程文档及程序

2021年第十届数学建模国际赛小美赛 B题 疾病传播的风险 原题再现&#xff1a; 空气传播疾病可以通过咳嗽或打喷嚏、喷洒液体或灰尘传播。另一方面&#xff0c;一些常见的传染病只能通过飞沫传播。请建立一个模型&#xff0c;以评估密闭空间内空气传播和液滴传播疾病的可能性。…

常用API

API(全称 Application Programming Interface&#xff1a;应用程序编程接口) 就是别人写好的一些程序&#xff0c;给我们直接拿去调用即可解决问题的。 包 什么是包&#xff1f; 包是用来分门别类的管理各种不同程序的&#xff0c;类似于文件夹&#xff0c;建包有利于程序的管…

【AIGC】prompt工程从入门到精通--图片生成专题

本文为系列教程【AIGC】prompt工程从入门到精通的子教程。 一、介绍 与文本提示相比&#xff0c;找到最佳的提示词来生成完美的图片并没有那么成熟。这可能是因为创建对象自身的挑战&#xff0c;这些对象基本上是主观的并且往往缺乏良好的准确性度量方法。 本指南涵盖了基本…

.NET 8 中 Android 资源生成的改进和变化

作者&#xff1a;Dean Ellis 排版&#xff1a;Alan Wang 随着 .NET 8 的发布&#xff0c;我们引入了一个新系统&#xff0c;用于生成访问 Android 资源的 C# 代码。 在 Xamarin.Android、.NET 6 和 .NET 7 中生成 Resource.designer.cs 文件的系统已经被弃用。 新系统生成一个名…

No Chromedriver found that can automate Chrome ‘x.x.xxxx‘的解决办法

一、前置说明 在使用Appium对Android设备自动化测试时&#xff0c;切换WebView时抛出异常&#xff1a; selenium.common.exceptions.WebDriverException: Message: An unknown server-side error occurred while processing the command. Original error: No Chromedriver foun…

交叉验证以及scikit-learn实现

交叉验证 交叉验证既可以解决数据集的数据量不够大问题&#xff0c;也可以解决参数调优的问题。 主要有三种方式&#xff1a; 简单交叉验证&#xff08;HoldOut检验&#xff09;、k折交叉验证&#xff08;k-fold交叉验证&#xff09;、自助法。 本文仅针对k折交叉验证做详细解…

基于ssm vue个人需求和地域特色的外卖推荐系统源码和论文

首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要包罗软件架构模式、整体功能模块、数据库设计。本项…

利用管道、信号量、信号、共享内存和消息队列进行多进程通信

一.管道&#xff08;分为命名管道和匿名管道&#xff09; 管道的特点&#xff1a; ①无论是命名管道还是匿名管道&#xff0c;写入管道的数据都存放在内存之中。 ②管道是一种半双工的通信方式&#xff08;半双工是指终端A能发信号给终端B&#xff0c;终端B也能发信号给终端…

软件开发安全指南

2.1.应用系统架构安全设计要求 2.2.应用系统软件功能安全设计要求 2.3.应用系统存储安全设计要求 2.4.应用系统通讯安全设计要求 2.5.应用系统数据库安全设计要求 2.6.应用系统数据安全设计要求 软件开发全资料获取&#xff1a;点我获取

Linux 网络协议

1 网络基础 1.1 网络概念 网络是一组计算机或者网络设备通过有形的线缆或者无形的媒介如无线&#xff0c;连接起来&#xff0c;按照一定的规则&#xff0c;进行通讯的集合( 缺一不可 )。 5G的来临以及IPv6的不断普及&#xff0c;能够进行联网的设备将会是越来越多&#xff08…

vue 商品列表案例

my-tag 标签组件的封装 1. 创建组件 - 初始化 2. 实现功能 (1) 双击显示&#xff0c;并且自动聚焦 v-if v-else dbclick 操作 isEdit 自动聚焦&#xff1a; 1. $nextTick > $refs 获取到dom&#xff0c;进行focus获取焦点 2. 封装v-focus指令 (2) 失去焦点&#xff0c;隐藏…

用Rust刷LeetCode之66 加一

66. 加一[1] 难度: 简单 func plusOne(digits []int) []int { length : len(digits) // 从最低位开始遍历&#xff0c;逐位加一 for i : length - 1; i > 0; i-- { if digits[i] < 9 { digits[i] return digits } d…