C++ day49 买卖股票的最佳时机

题目1:121 买卖股票的最佳时机

题目链接:买卖股票的最佳时机

对题目的理解

prices[i]表示一支股票在第i天的价格,只能在某一天买入这支股票,并在之后的某一天卖出该股票,从而获得最大利润,返回该最大值,若不能获取利润,则返回0

注意:股票只能买卖一次

暴力解法(超时)

class Solution {
public:int maxProfit(vector<int>& prices) {int result=0;for(int i=0;i<prices.size();i++){for(int j=i+1;j<prices.size();j++){result=max(result,prices[j]-prices[i]);}}return result;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

贪心解法

股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润

class Solution {
public:int maxProfit(vector<int>& prices) {int result=0;int low=INT_MAX;for(int i=0;i<prices.size();i++){low=min(low,prices[i]);result=max(result,prices[i]-low);}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

动态规划

动规五部曲

1)dp数组及下标i的含义(使用二维dp数组)

dp[i][0]表示第i天持有这支股票所拥有的最大现金,注意是持有,不一定是当天买入,可能是前天已经买入

dp[i][1]表示第i天不持有这支股票所拥有的最大现金,注意是持有,不一定是当天卖出,可能是前天已经卖出

最终求 dp[prices.size()][1]

本题中不持有股票状态所得金钱一定比持有股票状态得到的多

2)递推公式

dp[i][0] = dp[i-1][0]  一直持有该股票

dp[i][0] = -prices[i]  在第i天买入这支股票,减去股票的价格,因为只买卖一次,所以直接等于-princes[i]

dp[i][0]=max(dp[i-1][0], -prices[i])

dp[i][1] = dp[i-1][1] 一直不持有该股票

dp[i][1] = dp[i-1][0] + prices[i]  在第i天将这支股票卖了,那么前一天一定是持有这只股票,所以是二者相加

dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i])

3)dp数组初始化

根据递推公式,dp[i]由dp[i-1]推出来,由前一个状态推出来

所以初始化,最前面的状态  第0天持有这支股票的最大现金(买入):dp[0][0]=-prices[0]   

 第1天不持有这支股票的状态(没有股票,不买入):dp[0][1]=0

4)遍历顺序

根据递推公式,后面状态依赖于前面的状态,所以从前往后进行遍历

for(int i=1;i<prices.size();i++){}

5)打印dp数组

代码

class Solution {
public:int maxProfit(vector<int>& prices) {//dp数组定义vector<vector<int>> dp(prices.size(),vector<int>(2));//初始化dp数组dp[0][0]=-prices[0];dp[0][1]=0;//递推for(int i=1;i<prices.size();i++){dp[i][0]=max(dp[i-1][0],-prices[i]);dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);}return dp[prices.size()-1][1];}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

题目2:122 买卖股票的最佳时机Ⅱ

题目链接:买卖股票的最佳时机Ⅱ

对题目的理解

prices[i]表示某支股票的第i天的价格,在每一天,都可以决定买入或者卖出股票,但是每天最多只能持有1支股票,可先购买,在同一天出售,返回获得的最大利润

可以多次买卖股票

贪心解法(利润分解)

假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0],相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。

把利润分解为每天为单位的维度,只收集每天的正利润,注意至少要第2天才会有正利润

局部最优:收集每天的正利润,全局最优:求得最大利润

class Solution {
public:int maxProfit(vector<int>& prices) {int result = 0;for(int i=1;i<prices.size();i++){result += max(0,prices[i]-prices[i-1]);//收集正利润}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

动态规划

动规五部曲

1)dp数组及下标i的含义

dp[i][0]  :第i天持有股票的最大现金

dp[i][1]:第i天不持有股票的最大现金

2)递推公式

dp[i][0] = dp[i-1][0] :一直不持有股票

dp[i][0] = dp[i-1][1] - prices[i]  在第i天买入股票,因为题目中描述可以多次买卖股票,所以使用第i-1天不持有股票的最大现金减去股票的价格

dp[i][0]  = max(dp[i-1][0],dp[i-1][1]-prices[i])

dp[i][1] = dp[i-1][1] : 一直不持有股票

dp[i][1] = dp[i-1][0] + prices[i] 在第i天卖出股票,说明第i-1天一定持有股票

dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i])

3)dp数组初始化

根据递推公式,后面的状态由前面的状态推导出来的,所以初始化dp[0][0]和dp[0][1]

dp[0][0]=-prices[0]

dp[0][1]=0

4)遍历顺序

根据递推公式,后面状态由前面状态推导,所以从前向后遍历

for(i=1;i<prices.size();i++)  注意这里是从1开始遍历的,因为i的状态,取决于i-1的状态

5)打印dp数组

代码

class Solution {
public:int maxProfit(vector<int>& prices) {//定义dp数组vector<vector<int>> dp(prices.size(),vector<int>(2,0));//初始化dp数组dp[0][0] = -prices[0];dp[0][1] = 0;for(int i=1;i<prices.size();i++){dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);}return dp[prices.size()-1][1];}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/205518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IPTABLES(一)

文章目录 1. iptables基本介绍1.1 什么是防火墙1.2 防火墙种类1.3 iptables介绍1.4 包过滤防火墙1.5 包过滤防火墙如何实现 2. iptables链的概念2.1 什么是链2.2 iptables有哪些链 3. iptables表的概念3.1 什么是表3.2 表的功能3.3 表与链的关系 4. iptables规则管理4.1 什么是…

【华为数据之道学习笔记】3-4主数据治理

主数据是参与业务事件的主体或资源&#xff0c;是具有高业务价值的、跨流程和跨系统重复使用的数据。主数据与基础数据有一定的相似性&#xff0c;都是在业务事件发生之前预先定义&#xff1b;但又与基础数据不同&#xff0c;主数据的取值不受限于预先定义的数据范围&#xff0…

MySql概述及其性能说明

MySQL是一种开源的关系型数据库管理系统&#xff0c;由瑞典MySQL AB公司开发&#xff0c;现属于Oracle公司。MySQL是最流行的开源数据库之一&#xff0c;被广泛地应用于Web开发中。MySQL提供了一个高度稳定可靠的数据存储解决方案&#xff0c;同时也可以很容易地跨平台运行。My…

2023年广东工业大学腾讯杯新生程序设计竞赛

E.不知道叫什么名字 题意&#xff1a;找一段连续的区间&#xff0c;使得区间和为0且区间长度最大&#xff0c;输出区间长度。 思路&#xff1a;考虑前缀和&#xff0c;然后使用map去记录每个前缀和第一次出现的位置&#xff0c;然后对数组进行扫描即可。原理&#xff1a;若 s …

Linux篇之在Centos环境下搭建Nvidia显卡驱动

一、前提条件 1、首先确认内核版本和发行版本&#xff0c;再确认显卡型号 uname -a // Linux localhost.localdomain 4.18.0-408.el8.x86_64 #1 SMP Mon Jul 18 17:42:52 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux1.2 cat /etc/redhat-release // CentOS Stream release 81.3…

【S2ST】Direct Speech-to-Speech Translation With Discrete Units

【S2ST】Direct Speech-to-Speech Translation With Discrete Units AbstractIntroductionRelated workModelSpeech-to-unit translation (S2UT) modelMultitask learningUnit-based vocoder ExperimentsDataSystem setupBaselineASRMTTTSS2TTransformer Translatotron Evaluat…

Python Jinja2 库的无限可能性

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com Jinja2&#xff0c;作为Python中最流行的模板引擎之一&#xff0c;为开发者提供了强大的工具&#xff0c;用于在Web应用和其他项目中生成动态内容。本文将深入研究 Jinja2 库的各个方面&#xff0c;提供更丰富的…

数据科学:Matplotlib、Seaborn笔记

数据科学&#xff1a;Numpy、Pandas 数据科学&#xff1a;Matplotlib、Seaborn笔记 数据科学&#xff1a;Numpy、Pandas、Matplotlib、Seaborn、Scipy、Scikit-Learn 三、Matplotlib1.Matplotlib subplots函数2.tight_layout()函数3.Matplotlib grid()设置网格格式4.fill_bet…

<蓝桥杯软件赛>零基础备赛20周--第9周--前缀和与差分

报名明年4月蓝桥杯软件赛的同学们&#xff0c;如果你是大一零基础&#xff0c;目前懵懂中&#xff0c;不知该怎么办&#xff0c;可以看看本博客系列&#xff1a;备赛20周合集 20周的完整安排请点击&#xff1a;20周计划 每周发1个博客&#xff0c;共20周&#xff08;读者可以按…

从零开始的c语言日记day41——自定义类型结构体

一、结构体的声明 1.1结构的基础知识 结构是一些值的集合&#xff0c;这些值称为成员变量。结构的每个成员可以是不同类型的变量。 Tag结构体标签 Member-list成员列表-里面可以有很多成员 Variable-list变量列表 结构体类型的定义方式 S1&#xff0c;s2是struct stu类型的…

黑苹果之显卡篇

一、什么是显卡 显卡GPU&#xff08;Video card、Display card、Graphics card、Video adapter&#xff09;是个人计算机基础的组成部分之一&#xff0c;将计算机系统需要的显示信息进行转换驱动显示器&#xff0c;并向显示器提供逐行或隔行扫描信号&#xff0c;控制显示器的正…

python数据分析

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 pandas统计分析基础实训 实训1 读取并查看某地区房屋销售数据的基本信息1. 训练要点2. 需求说明3.实现思路及步骤 实训2 提取房屋售出时间信息并描述房屋价格信息1. 训练要点…

数据结构 图的广度优先搜索和深度优先搜索

一、广度优先搜索 广度优先搜索等价于树的层次遍历&#xff0c;将起点的每一层进行遍历 当这一层结点全部被遍历完时&#xff0c;再遍历下一层次&#xff0c;从图中可以根据距离遍历起点的长度进行层次选择 例&#xff1a; 以a结点作为开始结点 a的下一层次有b c e三个结点 所以…

Spark Structured Streaming使用教程

文章目录 1、输入数据源2、输出模式3、sink输出结果4、时间窗口4.1、时间窗口4.2、时间水印&#xff08;Watermarking&#xff09; 5、使用例子 Structured Streaming是一个基于Spark SQL引擎的可扩展和容错流处理引擎&#xff0c;Spark SQL引擎将负责增量和连续地运行它&#…

Spring Security 自定义异常失效?从源码分析到解决方案

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

使用阿里巴巴同步工具DataX实现Mysql与ElasticSearch(ES)数据同步

一、Linux环境要求 二、准备工作 2.1 Linux安装jdk 2.2 linux安装python 2.3 下载DataX&#xff1a; 三、DataX压缩包导入&#xff0c;解压缩 四、编写同步Job 五、执行Job 六、定时更新 6.1 创建定时任务 6.2 提交定时任务 6.3 查看定时任务 七、增量更新思路 一、Linux环境要…

微信小程序js数组对象根据某个字段排序

一、排序栗子 注: 属性字段需要进行转换,如String类型或者Number类型 //升序排序 首元素(element1)在前 降序则(element1)元素在后 data data.sort((element1, element2) >element1.属性 - element2.属性 ); 二、代码 Page({/*** 页面的初始数据*/data: {user:…

SpringSecurity安全授权

目录 前言 正文 1.基本流程 2.基本用法 3.配置项 4.HttpSecurity 方式和内存认证方式 5.认证流程 6.基于数据库查询的登录验证 7.多种角色权限认证 8.自定义权限认证 总结 前言 安全对于任何系统来说都是非常重要的&#xff0c;权限的分配和管理一直都是开发者需…

C语言——输出菱形

法一&#xff1a; #include<stdio.h> #define N 7 //假设输出7层菱形 int main(){int i;//i控制第几行 int j;//j控制每一行空格的循环个数 int k;//k控制每一行*的循环次数 for(i1;i<4;i){//将图形分为两部分,前四行(第一部分) for(j1;j<4-i;j){//输出第i行的…

echarts双折线图

引用 //反应时长 durationCharts categoryCommonChart(studyBehavior.durationCharts, durationCharts) function categoryCommonChart(odata, dom){var myChart echarts.init(document.getElementById(dom));let oarr []oarr odata.series.map(function(item){let color…