C++初阶(十四)list

在这里插入图片描述


📘北尘_:个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

文章目录

  • 一、 list的介绍
  • 二、list的模拟实现
    • 1、list的节点
    • 2、list 的迭代器
    • 3、list
    • 4、打印
    • 5、完整代码


一、 list的介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

在这里插入图片描述


二、list的模拟实现

1、list的节点

template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x), _next(nullptr), _prev(nullptr){}};

2、list 的迭代器

template<class T, class Ref, class Ptr>struct __list_iterator{typedef list_node<T> Node;typedef __list_iterator<T, Ref, Ptr> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++(){_node = _node->_next;return *this;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};

3、list

template<class T>class list{typedef list_node<T> Node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;iterator begin(){return _head->_next;}iterator end(){return _head;}const_iterator begin() const{return _head->_next;}const_iterator end() const{return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;_size = 0;}list(){empty_init();}list(list<T>& lt){empty_init();for (auto e : lt){push_back(e);}}list<T>& operator=(list<T> lt){swap(lt);return *this;}void swap(list<T> lt){std::swap(_size, lt._size);std::swap(_head, lt._head);}iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* newnode = new Node(x);Node* prev = cur->_prev;prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;++_size;return iterator(newnode);}iterator erase(iterator pos){Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;delete cur;prev->_next = next;next->_prev = prev;--_size;}size_t size(){return _size;}void clear(){iterator it = begin();while (it != end){it = erase(it);}}void push_back(const T& x){insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void push_back(){erase(end());}void pop_back(){erase(begin());}private:Node* _head;size_t _size;};

4、打印

template<typename Container>void print_container(const Container& con){typename Container::const_iterator it = con.begin();while (it != con.end()){cout << *it << " ";++it;}cout << endl;}void test_list(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);print_container(lt);list<string> lt1;lt1.push_back("1111111111111");lt1.push_back("1111111111111");lt1.push_back("1111111111111");lt1.push_back("1111111111111");lt1.push_back("1111111111111");print_container(lt1);vector<string> v;v.push_back("222222222222222222222");v.push_back("222222222222222222222");v.push_back("222222222222222222222");v.push_back("222222222222222222222");print_container(v);}
}
int main()
{bit::test_list();return 0;
}

5、完整代码

#include<iostream>
#include<string>
#include<vector>
using namespace std;
namespace bit
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x), _next(nullptr), _prev(nullptr){}};template<class T, class Ref, class Ptr>struct __list_iterator{typedef list_node<T> Node;typedef __list_iterator<T, Ref, Ptr> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++(){_node = _node->_next;return *this;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};template<class T>class list{typedef list_node<T> Node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;iterator begin(){return _head->_next;}iterator end(){return _head;}const_iterator begin() const{return _head->_next;}const_iterator end() const{return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;_size = 0;}list(){empty_init();}list(list<T>& lt){empty_init();for (auto e : lt){push_back(e);}}list<T>& operator=(list<T> lt){swap(lt);return *this;}void swap(list<T> lt){std::swap(_size, lt._size);std::swap(_head, lt._head);}iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* newnode = new Node(x);Node* prev = cur->_prev;prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;++_size;return iterator(newnode);}iterator erase(iterator pos){Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;delete cur;prev->_next = next;next->_prev = prev;--_size;}size_t size(){return _size;}void clear(){iterator it = begin();while (it != end){it = erase(it);}}void push_back(const T& x){insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void push_back(){erase(end());}void pop_back(){erase(begin());}private:Node* _head;size_t _size;};template<typename Container>void print_container(const Container& con){typename Container::const_iterator it = con.begin();while (it != con.end()){cout << *it << " ";++it;}cout << endl;}void test_list(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);print_container(lt);list<string> lt1;lt1.push_back("1111111111111");lt1.push_back("1111111111111");lt1.push_back("1111111111111");lt1.push_back("1111111111111");lt1.push_back("1111111111111");print_container(lt1);vector<string> v;v.push_back("222222222222222222222");v.push_back("222222222222222222222");v.push_back("222222222222222222222");v.push_back("222222222222222222222");print_container(v);}
}
int main()
{bit::test_list();return 0;
}

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/204812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[LeetCode]-283. 移动零-1089. 复写零

目录 283. 移动零 描述 解析 代码 1089. 复写零 描述 解析 代码 283. 移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 描述 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &…

数据结构与算法编程题50

假设不带权有向图采用邻接矩阵G存储&#xff0c;设计实现以下功能的算法。 &#xff08;1&#xff09;求出图中每个顶点的出度。 &#xff08;2&#xff09;求出图中出度为0的顶点数。 &#xff08;3&#xff09;求出图中每个顶点的入度。 //参考博客&#xff1a;https://blog.…

想要精通GO语言?这些网站是你的最佳选择!

介绍&#xff1a;Go&#xff08;又称 Golang&#xff09;是由 Google 的 Robert Griesemer&#xff0c;Rob PGo&#xff08;又称 Golang&#xff09;是由 Google 的 Robert Griesemer&#xff0c;Rob Pike 及 Ken Thompson 开发的一种静态强类型、编译型语言。它在2009年11月10…

matplotlib与opencv图像读取与显示的问题

个人博客:Sekyoro的博客小屋 个人网站:Proanimer的个人网站 最近在用opencv和matplotlib展示图片,但是遇到了一些问题,这里展开说说 首先需要明确的是,opencv和matplotlib读取图片都是通道在最后,而前者默认可见光图像是BGR,后者是RGB.此外还有PIL以及imageio等读取图像的工具…

如何使用cpolar+Plex在Windows系统上搭建私人媒体影音站点公网可访问

文章目录 1.前言2. Plex网站搭建2.1 Plex下载和安装2.2 Plex网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1.前言 用手机或者平板电脑看视频&#xff0c;已经算是生活中稀松平常的场景了&#xff0c;特别是各…

ERP软件定制开发对企业的优势|app小程序搭建

ERP软件定制开发对企业的优势|app小程序搭建 随着科技的不断发展&#xff0c;企业管理也面临了更多的挑战。为了更好地适应市场需求和提高运营效率&#xff0c;越来越多的企业开始选择使用ERP软件进行管理。然而&#xff0c;市场上现成的ERP软件并不能完全满足企业的需求&#…

兰州电力博物馆 | OLED透明展示台:创新展示,增强互动体验

产品&#xff1a;8片55寸OLED透明屏 应用场景&#xff1a;OLED透明屏利用其高透明度的特点&#xff0c;可以叠加在文物展示台上面&#xff0c;这种展示方式既让观众看到了文物原貌&#xff0c;又能了解其内部结构和细节特点&#xff0c;打破空间的束缚。 项目时间&#xff1a…

opencv知识库:cv2.add()函数和“+”号运算符

需求场景 现有一灰度图像&#xff0c;需求是为该图像增加亮度。 原始灰度图像 预期目标图像 解决方案 不建议的方案——“”运算符 假设我们需要为原始灰度图像的亮度整体提升88&#xff0c;那么利用“”运算符的源码如下&#xff1a; import cv2img_path r"D:\pych…

SCADA软件工具有多少免费的?

随着工业自动化的飞速发展&#xff0c;SCADA系统已经成为工业领域智能化转型绕不开的重要工具&#xff0c;不少个人和公司也都加入到了学习研究SCADA系统的队伍中。数维图小编耗费大量时间整理了国内外免费&#xff08;非完全免费&#xff09;的SCADA软件工具&#xff0c;有部分…

电源模块测试系统测试稳压电源 提升电源稳定性和可靠性

稳压电源是用来将不稳定的电压转换为稳定的输出电压的电子装置&#xff0c;其性能、稳定性和可靠性直接影响着工作状态。稳压电源测试是保证电子设备稳定工作的重要环节&#xff0c;那么如何测试稳压电源呢? 一、静态测试 静态测试是通过万用表或数字电压表测量稳压电源的输出…

ComplexHeatmap热图专栏 | 6. 3D热图绘制教程

本期教程 原文链接https://mp.weixin.qq.com/s/EyBs6jn78zOomcTv1aP52g 6 3D热图的绘制教程 基于《热图绘制教程》专栏&#xff0c;本教程已更新了5个章节&#xff0c;不知道大家是否有所收获。对于小杜个人来说&#xff0c;真的需要不断的复习和练习才可以记住&#xff0c;但…

RedHat9中安装Mysql8.0+出现“错误:GPG 检查失败“的处理

近期通过VM安装了RedHat9&#xff0c;之后在RedHat9中安装Mysql8.0的时候出现了个问题&#xff1a;“错误&#xff1a;GPG 检查失败”&#xff0c;如图所示&#xff1a; 解决方案&#xff1a;重新导入新的秘钥即可&#xff0c;如下所示&#xff1a; rpm --import https://rep…

vr建筑虚拟实景展厅漫游体验更直观全面

随着科技的不断进步&#xff0c;纯三维、可交互、轻量化的三维线上展览云平台&#xff0c;打破时间界限&#xff0c;以其独特的魅力&#xff0c;给予客户更多的自主性、趣味性和真实性&#xff0c;客户哪怕在天南地北&#xff0c;通过网络、手机即可随时随地参观企业线上立体化…

泳道图绘制全攻略,一图胜千言,快速上手

泳道图是一种流程图的形式&#xff0c;通过在不同的泳道中展示不同的参与者&#xff0c;帮助我们更好地理解和分析流程。它是一种非常有用的工具&#xff0c;可以帮助我们在团队协作、流程管理和问题解决等方面取得更好的效果。 1. 泳道图的定义 泳道图是一种以泳道为基础的流程…

浅析pyqt事件机制

pyqt事件机制 一、什么是pyqt事件机制&#xff1f; ​ 事件是指用户操作或系统发生的各种动作&#xff0c;比如鼠标点击、键盘输入、窗口大小变化等。事件可以由用户或操作系统触发&#xff0c;然后被传递给应用程序进行处理。PyQt的事件机制通过事件循环&#xff08;Event L…

如何通过内网穿透实现无公网IP也能远程访问内网的宝塔面板

文章目录 一、使用官网一键安装命令安装宝塔二、简单配置宝塔&#xff0c;内网穿透三、使用固定公网地址访问宝塔 宝塔面板作为建站运维工具&#xff0c;适合新手&#xff0c;简单好用。当我们在家里/公司搭建了宝塔&#xff0c;没有公网IP&#xff0c;但是想要在外也可以访问内…

SVN修改已提交版本的日志方法

1.在工做中一直是使用svn进行項目的版本控制的&#xff0c;有时候因为提交匆忙&#xff0c;或是忘了添加Log&#xff0c;或是Log内容有错误。遇到此类状况&#xff0c;想要在查看项目的日志时添加log或是修改log内容&#xff0c;遇到以下错误&#xff1a; Repository has not b…

链表的应用

链表优点&#xff1a;链表各个节点个数可以灵活变动&#xff0c;学生多时可以增加节点&#xff0c;少时可以减少节点&#xff0c;链表不要求存储空间连续&#xff0c;空间利用率高 链表&#xff1a;链表中每个节点在内存中位置不一定连续&#xff0c;所以每一节点中一定有个字…

【EI会议征稿】第十届机电一体化与工业信息学国际学术研讨会(ISMII 2024)

第十届机电一体化与工业信息学国际学术研讨会&#xff08;ISMII 2024&#xff09; 2024 10th International Symposium on Mechatronics and Industrial Informatics 随着往年九届的成功举办&#xff0c;2024年第十届机电一体化与工业信息学国际学术研讨会&#xff08;ISMII…

深入理解Flexbox:构建灵活的布局系统

由于篇幅限制&#xff0c;我将提供一个详细的文章大纲和部分内容。您可以根据这个大纲扩展文章内容&#xff0c;以满足3000字的要求。 深入理解Flexbox&#xff1a;构建灵活的布局系统 引言 在现代web设计中&#xff0c;创建灵活且响应式的布局是非常重要的。Flexbox&#xf…