opencv rtsp 硬件解码

讨论使用opencv的reader

硬件解码的方案有太多种,如果使用ffmpeg硬件解码是最方便的,不方便的是把解码过后的GPU 拉到 CPU 上,再使用opencv的Mat 从cpu 上上载到gpu上,是不是多了两个过程,应该是直接从GPU mat 直接去处理, 最后一步再从GPU mat 上下载到cpu,render显示。

GPU 硬件解码是nv12 格式,我们为了显示和cpu使用直接转成了RGB或者BGR, 使用opencv再映射封装,最后又上载到cuda,这个过程很耗时间,而且不是必要的。

windows下使用cuda

经过实验,cv::cudacodec::createVideoReader 是可以拉取rtsp 流的,官方编译的可以读取rtsp,但是在文件流上出了问题,而且还有一个bug,就是在显示的时候,必须关闭一次窗口,才能显示后续的帧,而且还有一点,就是注意这个窗口必须是opengl 窗口,而且要打开这个窗口,而且在编译支持cuda的opencv时必须把opengl 勾选上,所以达不到产品化的要求,以下是测试代码:

#include <iostream>#include "opencv2/opencv_modules.hpp"#if defined(HAVE_OPENCV_CUDACODEC)#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/core/opengl.hpp>
#include <opencv2/cudacodec.hpp>
#include <opencv2/highgui.hpp>#if _DEBUG
#pragma comment(lib,"opencv_world460.lib")
#else 
#pragma comment(lib,"opencv_world460.lib")
#endif
int main()
{cv::cuda::printCudaDeviceInfo(cv::cuda::getDevice());int count = cv::cuda::getCudaEnabledDeviceCount();printf("GPU Device Count : %d \n", count);const std::string fname("rtsp://127.0.0.1/101-640.mkv"); //视频文件// const std::string fname("test_222.mp4"); //视频文件// cv::namedWindow("CPU", cv::WINDOW_NORMAL);cv::namedWindow("GPU", cv::WINDOW_OPENGL);cv::cuda::setGlDevice();cv::Mat frame;cv::VideoCapture reader(fname);cv::cuda::GpuMat d_frame;cv::Ptr<cv::cudacodec::VideoReader> d_reader = cv::cudacodec::createVideoReader(fname);cv::TickMeter tm;std::vector<double> cpu_times;std::vector<double> gpu_times;int gpu_frame_count = 0, cpu_frame_count = 0;
#if 0for (;;){tm.reset(); tm.start();if (!reader.read(frame))break;tm.stop();cpu_times.push_back(tm.getTimeMilli());cpu_frame_count++;cv::imshow("CPU", frame);if (cv::waitKey(1) > 0)break;}
#endiffor (;;){tm.reset();tm.start();if (!d_reader->nextFrame(d_frame))break;tm.stop();//d_frame.step = d_frame.cols * d_frame.channels();//cv::cuda::GpuMat gpuMat_Temp = d_frame.clone();gpu_times.push_back(tm.getTimeMilli());gpu_frame_count++;if (gpu_frame_count > 2){cv::Mat test;d_frame.download(test);d_frame.release();// cv::cvtColor(test, test, cv::COLOR_BGRA2BGR);//cv::imwrite("./test1.jpg", test);cv::imshow("GPU", test);}if (cv::waitKey(1) > 0)break;}if (!cpu_times.empty() && !gpu_times.empty()){std::cout << std::endl << "Results:" << std::endl;std::sort(cpu_times.begin(), cpu_times.end());std::sort(gpu_times.begin(), gpu_times.end());double cpu_avg = std::accumulate(cpu_times.begin(), cpu_times.end(), 0.0) / cpu_times.size();double gpu_avg = std::accumulate(gpu_times.begin(), gpu_times.end(), 0.0) / gpu_times.size();std::cout << "CPU : Avg : " << cpu_avg << " ms FPS : " << 1000.0 / cpu_avg << " Frames " << cpu_frame_count << std::endl;std::cout << "GPU : Avg : " << gpu_avg << " ms FPS : " << 1000.0 / gpu_avg << " Frames " << gpu_frame_count << std::endl;}return 0;
}

经过release版本的测试,cuda硬件解码比cpu慢很多,我cpu是intel 13代 13700,速度很快,gpu是3060ti, 实际测试就是如此。
说明在windows下实际类里面解码的时候在cpu和gpu上转换的时间太多
在这里插入图片描述
    综上所述,必须使用更为简单的方法,放弃windows上的做法,放到linux上, ffmpeg硬件解码 然后映射到gpu mat上,至于解码ffmpeg 可以看我的其他文章,至于ffmpeg 编解码 nvidia 上官网也是有介绍的:
编译ffmpeg
    使用python和linux,使用python的作用是取消c++ 到python之间的内存共享,在windows上编译pynvcodec 会遇到各种问题,建议在linux 编译 pynvcodec,为什么不使用ffmpeg直接解码,因为:我们使用ffmpeg解码得到的YUV格式,我们只能在CPU下转化到RGB的色彩空间,缺少在GPU上进行全部转化的流程,因此我们使用vpf 来进行python上的视频处理,同时结束时可以直接转化成pytorch的张量来处理。

    VideoProcessingFramework(VPF)是NVIDIA开源的适用于Python的视频处理框架,可用于硬件加速条件下的视频编解码等处理类任务。同时对于Pytorch比较友好,能够将解析出来的图像数据直接转化成Tensor()的格式。以下为例子:

import PyNvCodec as nvc
import PytorchNvCodec as pnvc  while True:# Read data.# Amount doesn't really matter, will be updated later on during decode.bits = proc.stdout.read(read_size)if not len(bits):print("Can't read data from pipe")breakelse:rt += len(bits)# Decodeenc_packet = np.frombuffer(buffer=bits, dtype=np.uint8)pkt_data = nvc.PacketData()try:surf = nvdec.DecodeSurfaceFromPacket(enc_packet, pkt_data)    # 获取流的数据# Convert to planar RGBrgb_pln = to_rgb.run(surf)   # 转换到rgb_plnif rgb_pln.Empty():break# PROCESS YOUR TENSOR HERE.# THIS DUMMY PROCESSING JUST ADDS RANDOM ROTATION.src_tensor = surface_to_tensor(rgb_pln)  # 转化为Tensor(),数据存储在GPU中dst_tensor = T.RandomRotation(degrees=(-1, 1))(src_tensor)surface_rgb = tensor_to_surface(dst_tensor, gpu_id)# Convert back to NV12dst_surface = to_nv12.run(surface_rgb) # 再转换回码流if src_surface.Empty():break# Handle HW exceptions in simplest possible way by decoder respawnexcept nvc.HwResetException:nvdec = nvc.PyNvDecoder(w, h, f, c, g)continue

使用gstreamer

近来来opencv的下载是一个问题,动不动就下载出错,使用gstreamer 在windows下和ffmpeg 差不离,编译也比较麻烦,我们尽量在linux下编译

sudo apt-get update 
sudo apt-get install build-essential cmake git pkg-config 
sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev 
sudo apt-get install libgtk2.0-dev 
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev 
sudo apt-get install libatlas-base-dev gfortran 
//在opencv里面安装gstreamer插件 
sudo apt-get install gstreamer1.0-tools gstreamer1.0-alsa gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav 
sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libgstreamer-plugins-good1.0-dev libgstreamer-plugins-bad1.0-dev cd /home/opencv 
git clone https://github.com/opencv.git 
cd opencv 
git checkout 4.7.0 
cd /home/opcv 
nkdir build 
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D CUDA_GENERATION=Kepler .. 
make -j4 
sudo make install
int main()
{// std::cout << cv::getBuildInformation() << std::endl;using std::chrono::steady_clock;typedef std::chrono::milliseconds milliseconds_type;const int interval = 15;std::stringstream ss;std::string rtsp_url = "rtsp://127.0.0.1/101-640.mkv";size_t latency = 200;size_t frame_width = 1920;size_t frame_height = 1080;size_t framerate = 15;ss << "rtspsrc location=" << rtsp_url << " latency=" << latency << " ! application/x-rtp, media=video, encoding-name=H264 "<< "! rtph264depay ! video/x-h264, clock-rate=90000, width=" << frame_width << ", height=" << frame_height << ", framerate="<< framerate << "/1 ! nvv4l2decoder ! video/x-raw(memory:NVMM), width=" << frame_width << ", height=" << frame_height<< ", framerate=" << framerate << "/1 ! nvvideoconvert ! video/x-raw, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink";std::cout << ss.str() << std::endl;cv::VideoCapture cap = cv::VideoCapture(ss.str(), cv::CAP_GSTREAMER);if (!cap.isOpened()){std::cerr << "error to open camera." << std::endl;return -1;}std::cout << cv::getBuildInformation() << std::endl;cv::Mat frame;steady_clock::time_point start = steady_clock::now();size_t frame_idx = 0;while (1){bool ret = cap.read(frame);if (ret){// cv::imwrite("tmp.jpg", frame);++frame_idx;}if (frame_idx % interval == 0){steady_clock::time_point end = steady_clock::now();milliseconds_type span = std::chrono::duration_cast<milliseconds_type>(end - start);std::cout << "it took " << span.count() / frame_idx << " millisencods." << std::endl;start = end;}}return 0;
}

一点一点排除,在windows上很难复现很多代码,很多都是不稳当的做法,只能做做demo,完全产品化不了,我们目前稳定的做法,1 是使用live555 ,下拉 rtsp,ffmpeg 硬件解码,转成mat,转成gpumat,再转成mat。这个方案不断修改吧。等我更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20407.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数实融合 产业共创 | 竹云受邀出席“2023湾区数字科技50人论坛”

7月29日&#xff0c;“2023湾区数字科技50人论坛”在深圳湾科技生态园圆满举行&#xff01;本届论坛由深圳市科学技术协会指导&#xff0c;中国鲲鹏产业源头创新中心、湾盟产业创新服务中心主办&#xff0c;深圳市金融攻关基地、广东赛迪工业和信息化研究院、香港科技大学深港协…

MySQL数据库备份与恢复

在任何数据库环境中&#xff0c;总会有不确定的意外情况发生&#xff0c;比如停电&#xff0c;计算机系统的各种软硬件故障&#xff0c;认为破坏&#xff0c;管理员误操作等是不可避免的&#xff0c;这些情况可能会导致 数据的丢失&#xff0c; 服务器瘫痪 等严重后果。存在多个…

STM32CubeMX配置定时器PWM--保姆级教程

———————————————————————————————————— ⏩ 大家好哇&#xff01;我是小光&#xff0c;嵌入式爱好者&#xff0c;一个想要成为系统架构师的大三学生。 ⏩最近在开发一个STM32H723ZGT6的板子&#xff0c;使用STM32CUBEMX做了很多驱动&#x…

【Python】从同步到异步多核:测试桩性能优化,加速应用的开发和验证

目录 测试工作中常用到的测试桩mock能力 应用场景 简单测试桩 http.server扩展&#xff1a;一行命令实现一个静态文件服务器 性能优化&#xff1a;使用异步响应 异步响应 能优化&#xff1a;利用多核 gunicorn 安装 gunicorn 使用 gunicorn 启动服务 性能优化&#…

/lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.28‘ not found

某项目中&#xff0c;我要给别人封装一个深度学习算法的SDK接口&#xff0c;运行在RK3588平台上&#xff0c;然后客户给我的交叉编译工具链是 然后我用他们给我的交叉编译工具链报下面的错误&#xff1a; aarch64-buildroot-linux-gnu-gcc --version /data/chw/aarch64/bin/cca…

使用idea实现git操作大全(在项目开发中遇到的实际情况

使用idea实现git操作大全&#xff08;在项目开发中遇到的实际情况&#xff09; 1.安装git插件2.在开发中切记拉一个自己的分支 1.安装git插件 2.在开发中切记拉一个自己的分支 选中需要拉的分支&#xff0c;右键该分支&#xff0c;选中new breach from “分支”&#xff0c;点…

Permute 3 for mac音视频格式转换

Permute是一款Mac平台上的媒体格式转换软件&#xff0c;由Chaotic Software开发。它可以帮助用户快速地将各种音频、视频和图像文件转换成所需格式&#xff0c;并提供了一些常用工具以便于用户进行编辑和处理。 Permute的主要特点包括&#xff1a; - 支持大量格式&#xff1a;支…

小程序安全性加固:如何保护用户数据和防止恶意攻击

第一章&#xff1a;引言 在当今数字化时代&#xff0c;移动应用程序的使用已经成为人们日常生活中的重要组成部分。小程序作为一种轻量级的应用程序形式&#xff0c;受到了广泛的欢迎。然而&#xff0c;随着小程序的流行&#xff0c;安全性问题也日益凸显。用户数据泄露和恶意攻…

flask中写一个基础的sqlHelper类

写一个SQLHelper类&#xff1a; from flask_sqlalchemy import SQLAlchemydb SQLAlchemy()class SQLHelper:staticmethoddef add(record):db.session.add(record)return SQLHelper.session_commit()staticmethoddef add_all(records):db.session.add_all(records)return SQLH…

STM32 DMA

DMA介绍 DMA&#xff0c;Direct Memory Access&#xff0c;即直接存储器访问。 DMA传输&#xff0c;将数据从一个地址空间复制到另一个地址空间。&#xff08;内存&#xff08;程序里定义的数组&#xff09;->外设&#xff08;串口、SPI等外设的数据寄存器&#xff09;、外…

【MySQL】DDL和DML

4&#xff0c;DDL:操作数据库 我们先来学习DDL来操作数据库。而操作数据库主要就是对数据库的增删查操作。 4.1 查询 查询所有的数据库 SHOW DATABASES; 运行上面语句效果如下&#xff1a; 上述查询到的是的这些数据库是mysql安装好自带的数据库&#xff0c;我们以后不要操…

django实现部门表的增删改查界面

1、前期准备 部署好mysql数据库&#xff0c;创建好unicom数据库下载好bootstap的插件下载好jquery的插件下载好mysqlclient-1.4.6-cp36-cp36m-win_amd64.whl的安装包&#xff0c;根据python的版本下载 2、创建项目 在pycharm中创建项目 在pycharm的终端创建虚拟环境 py -m v…

Linux知识点 -- 基础IO(三)

Linux知识点 – 基础IO&#xff08;三&#xff09; 文章目录 Linux知识点 -- 基础IO&#xff08;三&#xff09;一、理解文件系统1.磁盘文件2.文件系统的存储结构3.inode与文件名的关系 二、软硬链接1、软链接2.硬链接 三、动静态库1.库2.生成静态库3.静态库的使用4.生成动态库…

基于SpringBoot+Vue的在线考试系统设计与实现(源码+LW+部署文档等)

博主介绍&#xff1a; 大家好&#xff0c;我是一名在Java圈混迹十余年的程序员&#xff0c;精通Java编程语言&#xff0c;同时也熟练掌握微信小程序、Python和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…

Zabbix分布式监控Web监控

目录 1 概述2 配置 Web 场景2.1 配置步骤2.2 显示 3 Web 场景步骤3.1 创建新的 Web 场景。3.2 定义场景的步骤3.3 保存配置完成的Web 监控场景。 4 Zabbix-Get的使用 1 概述 您可以使用 Zabbix 对多个网站进行可用性方面监控&#xff1a; 要使用 Web 监控&#xff0c;您需要定…

matlab编程实践18、19

浅水方程 浅水方程可以建立起海啸和浴缸中波浪的数学模型。浅水方程建立了水或者其它不可压缩液体受扰动时传播的模型。隐含的假设是&#xff0c;液体的深度和波浪的长度、扰动等相比是很小的。 在这样的记号下&#xff0c;浅水方程为双曲守恒定律的一个例子。 使用拉克斯-冯特…

线段树详解 原理解释 + 构建步骤 + 代码(带模板)

目录 介绍&#xff1a; 定义&#xff1a; 以具体一个题目为例&#xff1a;​ 树的表示方法&#xff1a; 实现步骤&#xff1a; 构建结点属性&#xff1a; pushup函数&#xff1a; build函数&#xff1a; pushdown函数&#xff1a; modify函数&#xff1a; query…

『赠书活动 | 第十六期』《深入浅出Java虚拟机:JVM原理与实战》

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 『赠书活动 &#xff5c; 第十六期』 本期书籍&#xff1a;《深入浅出Java虚拟机&#xff1a;JVM原理与实战》 赠书规则&#xff1a;评论区&#xff1a;点赞&#xff…

站点可靠性工程 (SRE)

随着世界各地的组织努力开发安全、可靠、可扩展且可持续的 IT 基础架构&#xff0c;对高效基础架构监控和管理的需求日益增长&#xff0c;企业正在用不可扩展的遗留架构换取现代解决方案&#xff0c;在尖端技术的推动下&#xff0c;这些使基础设施管理过程更加顺畅和轻松&#…

SpringBoot + minio实现分片上传、秒传、续传

什么是minio MinIO是一个基于Go实现的高性能、兼容S3协议的对象存储。它采用GNU AGPL v3开源协议&#xff0c;项目地址是https://github.com/minio/minio。 引用官网&#xff1a; MinIO是根据GNU Affero通用公共许可证v3.0发布的高性能对象存储。它与Amazon S3云存储服务兼容…