AI伦理专题报告:2023年全球人工智能伦理治理报告

今天分享的是人工智能系列深度研究报告:《AI伦理专题报告:2023年全球人工智能伦理治理报告》。

(报告出品方:钛媒体)

报告共计:239页

摘要

人工智能(ArtificialIntelligence)作为新一轮科技革命和产业变革的重要驱动力量,正逐步向人类社会各个领域渗透融合,对经济发展、社会进步、国际政治格局等诸多方面产生重大深远的影响。然而,在人工智能应用广度和深度不断拓展的过程中,也不断暴露出一些风险隐患,如隐私泄露、偏见歧视、算法滥用、安全问题等,引发了社会各界广泛关注。尤其是在发展中遇到的“人机对齐问题”,即如何确保人工智能系统安全可控,符合人类意图和价值观。

除此之外,人工智能在世界范围内的不平等扩散会造成国际范围内的公平正义问题,即人工智能带来的便利较多惠及发达国家,而造成的负面影响较多殃及发展中国家,因此国际间人工智能健康发展也是世界平稳发展的重要因素,国家间政治制度和意识形态的差异不能阻止在 AI 治理问题上达成共识。面对人工智能发展应用中的伦理风险,各国与社会各界开始展开伦理探讨,寻求应对 AI 伦理风险的路径和规范,以保证人工智能的可持续发展。因此,人工智能伦理(AIEthics)成为社会各界关注的议题,并成为一个备受关注的研究领域。

人工智能发展背景

人工智能的发展历程可以追溯到 20 世纪50 年代。1950 年,Alan Turing 发表了“计算机器和智能”,提出了模仿游戏的想法,这一建议后来成为了图灵测试,其测量机器的思考能力。在1952年,计算机科学家亚瑟·塞缪尔开发了一种跳棋计算机程序,这是第一个独立学习如何玩游戏的人。

1956 年,约翰·麦卡锡、马文·明斯基、克劳德·香农和纳撒尼尔·罗切斯特等人在达特茅斯学院组织了一次会议,正式提出了“人工智能”这个概念。此后,研究人员开始利用逻辑、符号、搜索、知识表示等方法来实现人工智能。在1958 年,McCarthy 开发了 Lisp,这是人工智能研究中最受欢迎且最受青睐的编程语言。

在 20 世纪 60 年代和 70 年代,人工智能的发展受到了政府和私营企业的支持,许多重要的研究机构和实验室涌现出来,如斯坦福人工智能实验室、麻省理工学院人工智能实验室等。这一时期的研究主要集中在专家系统、自然语言处理、图像和机器学习等领域。然而由于当时计算机性能和数据处理能力的限制,人工智能的进展缓慢,研究成果也比较有限到了 20 世纪 80 年代,人工智能的发展出现了两个主要的趋势。一方面,基于规则的专家系统得到了进一步的发展和应用;另一方面,基于人工神经网络的机器学习方法开始逐渐流行。随着计算机性能和数据处理能力的提升,人工智能的应用范围开始扩大,涵盖了更多的领域。

2023 全球人工智能伦理治理报告 (政策篇)

随着人工智能的迅猛发展各国近年来陆续出具相关治理政策,并在今年取得了里程碑式的阶段性效果。例如欧盟发布了《人工智能法案》,该法案首先考虑了监管“黑箱”技术的核心诉求,突破性的规范人工智能与欧盟社会的价值观的融合,其次在做出更细化指引的同时创建严格的风险等级,对于高风险人工智能技术做出与之匹配的监管等级。欧盟的《人工智能法案》决议标志着欧洲在人工智能监管方面迈出了重要一步,在全球范围内树立了新的监管标准。美国发布的《人工智能权利法案蓝图》对于人权有了更为细节的阐述,并且侧重人工智能与其他产业的融合发展,对于不同行业、工种有了具体的规范、保护,甚至涵盖地产市场。与欧盟不同的是,美国的政策更为侧重服务于人工智能行业以及相关联动行业的未来发展,已确立美国人工智能在全世界的领先地位。同样在今年我国发布了《生成式人工智能服务管理暂行办法》,这是我国首个针对生成式人工智能服务的管理办法,不仅对行业做出了具体的规范,并且与欧美不同的是,我国在监管的同时最大限度给予更为宽阔的空间发展,对于行业发展起到重要知道作用。总而言之,2023 年对于各国来说,其政策皆取到了突破性的进展。

2023 全球人工智能伦理治理报告(案例篇)

进入2023 年以来,随着人工智能大模型在应用层的迅猛发展,全球人工智能来到了“百花齐放”的时代。一方面,人工智能带来了生产力的增加以及经济效率的提高;另一方面也改变了人类的生活方式,优化了社会资源配置。但与此同时,随着人工智能技术的不断迭代升级以及更广泛地应用于更来越多的新领域,人工智能暴露的伦理风险也在与人工智能的发展并驾齐驱,人工智能伦理问题不断涌出,甚至已经威胁到了人的生命安全。

最为主要涉及的既是“人机对齐”问题。人工智能人机对齐是指确保人工智能系统的目标和人类价值观一致,使其符合设计者的利益和预期,不会产生意外的有害后果。然而,随着人工智能技术的不断发展,人机对齐问题变得越来越复杂和重要。首先,人工智能系统的决策过程往往缺乏透明性和可解释性,使得人们难以理解人工智能系统的决策过程和结果这可能导致人们对人工智能系统的信任度降低,进而影响人工智能技术的发展和应用。其次人工智能系统的目标和人类价值观之间可能存在不匹配的问题。例如,人工智能系统可能会被设计成最大化利润或提高效率,而忽视人类价值观中的公平、正义和安全等问题。这种不匹配可能导致意外的有害后果,甚至威胁人类的安全和利益。此外,人工智能系统的决策过程也可能受到偏见和歧视等因素的影响。例如,基于数据的机器学习算法可能会在某些情况下出现偏见和歧视,这可能与人类价值观中的平等和公正原则相悖。

为了解决人工智能人机对齐问题,我们需要加强人工智能技术的透明性和可解释性,提高人们对人工智能系统的信任度和理解度。同时,我们也需要制定和实施更加完善的人工智能伦理准则和监管机制,确保人工智能系统的目标和人类价值观一致,避免出现意外的有害后果。

在未来的发展中,人工智能人机对齐问题将继续存在并不断演变。我们需要加强跨学科的研究和合作,推动人工智能技术的可持续发展,同时也需要加强相关政策和法规的制定和完善,以确保人工智能技术的发展和应用符合人类的价值观和利益。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/203291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在 Node-RED 中引入 ECharts 实现数据可视化

Node-RED 提供了强大的可视化工具,而通过引入 ECharts 图表库,您可以更直观地呈现和分析数据。在这篇博客中,我们将介绍两种在 Node-RED 中实现数据可视化的方法:一种是引入本地 ECharts 库,另一种是直接使用 CDN&…

网络和Linux网络_11(数据链路层)以太网(MAC帧)协议+局域网转发+ARP协议

目录 1. 以太网协议 1.1 MAC地址 1.2 以太网帧格式 2. 局域网转发原理 2.1 数据碰撞和交换机 2.2 最大传输单元MTU 3. ARP协议 3.1 ARP协议格式 3.2 模拟APR协议工作过程 3.3 ARP缓存表 4. 重看TCP/IP四层模型 本篇完。 1. 以太网(MAC帧)协议 网络层的IP协议并不是…

什么是数据清洗、特征工程、数据可视化、数据挖掘与建模?

1.1什么是数据清洗、特征工程、数据可视化、数据挖掘与建模? 视频为《Python数据科学应用从入门到精通》张甜 杨维忠 清华大学出版社一书的随书赠送视频讲解1.1节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵…

python HTML文件标题解析问题的挑战

引言 在网络爬虫中,HTML文件标题解析扮演着至关重要的角色。正确地解析HTML文件标题可以帮助爬虫准确地获取所需信息,但是在实际操作中,我们常常会面临一些挑战和问题。本文将探讨在Scrapy中解析HTML文件标题时可能遇到的问题,并…

微软 Power Platform 零基础 Power Pages 网页搭建高阶实际案例实践(四)

微软 Power Platform 零基础 Power Pages 网页搭建教程之高阶案例实践学习(四) Power Pages 实际案例学习进阶 微软 Power Platform 零基础 Power Pages 网页搭建教程之高阶案例实践学习(四)1、新增视图,添加List页面2…

Java集合进阶(上)

集合 集合在Java开发中应用极为广泛,它其实就是一些常用的数据结构的包装类,分为单列集合(Collecton接口类,例如LinkdeList集合)和双列集合(Map接口类,例如HashMap集合)两种 Collection Coll…

网络层之IP数据报格式、数据报分片、IPv4、子网划分和子网掩码

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…

Kubernetes Service控制器详解以及切换为ipvs代理模式

文章目录 一、Service 存在的意义二、Pod与Service的关系三、Service定义与创建四、Service三种常用类型五、Service代理模式六、切换Service代理模式七、service总体工作流程八、kube-proxy ipvs和iptables的异同九、Service DNS名称 一、Service 存在的意义 service的引入主…

【从零开始学习JVM | 第四篇】类加载器的分类以及双亲委派机制

前言: 在Java编程中,类加载器(Class Loader)扮演着重要的角色。类加载器负责加载Java字节码并将其转换为可执行对象,使得我们能够在应用程序中使用各种类和资源。Java类加载器的设计和实现旨在支持动态扩展和模块化编程,为Java语…

管理和监控CentOS上的HTTP服务

CentOS作为一款稳定的开源服务器操作系统,为各种网络服务提供了优秀的支持。其中,HTTP服务是互联网上最常用的服务之一,它为人们提供了便捷的信息访问和交互方式。在CentOS上管理和监控HTTP服务是一项重要的任务,下面我们将介绍一…

【改进YOLOv8】融合感受野注意力卷积RFCBAMConv的杂草分割系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着计算机视觉技术的不断发展,图像分割成为了一个重要的研究领域。图像分割可以将图像中的不同对象或区域进行有效的分离,对于许多应用领…

elk+kafka+filebeat

elk1 cd /opt 把filebeat投进去 tar -xf filebeat-6.7.2-linux-x86_64.tar.gz mv filebeat-6.7.2-linux-x86_64 filebeat cd filebeat/ yum -y install nginx systemctl restart nginx vim /usr/share/nginx/html/index.html this is nginx cp filebeat.yml filebeat.yml.…

EPICS modbus 模块数字量读写练习

本文使用modbus slave软件模拟一个受控的modbus设备,此模拟设备提供如下功能: 1、线圈1,起始地址为0,数量为8,软件设置如下(功能码1): 2、线圈2,起始地址为8,数量为8,软…

使用GPT-4V解决Pycharm设置问题

pycharm如何实现关联,用中文回答 在PyCharm中关联PDF文件类型,您可以按照以下步骤操作: 1. 打开PyCharm设置:点击菜单栏中的“File”(文件),然后选择“Settings”(设置)。…

论文笔记--A Fine-grained Interpretability Evaluation Benchmark for Neural NLP

论文笔记--A Fine-grained Interpretability Evaluation Benchmark for Neural NLP 1. 文章简介2. 文章概括3 文章重点技术3.1 数据收集3.2 数据扰动3.3 迭代标注和检查根因3.4 度量3.4.1 Token F1-score3.4.2 MAP(Mean Average Precision) 4. 文章亮点5. 原文传送门 1. 文章简…

日志框架梳理(Log4j,Reload4j,JUL,JCL,SLF4J,Logback,Log4j2)

原文链接 日志框架发展历程 在了解日志框架时总会列出一系列框架:Log4j,Reload4j,JUL,JCL,SLF4J,Logback,Log4j2,这么多框架让人感到混乱,该怎么选取、该怎么用。接下来…

分享“技艺与传承”的魅力!春城晚报(开屏新闻)生活节第七期媒体开放日活动举行

近日,由云南报业传媒(集团)有限责任公司、云南春晚传媒有限公司指导;金格金俊广场、云南精品文化传媒有限公司联合主办的第七期媒体开放日活动在金格金俊广场B1共享空间举办。本次活动以「技艺与传承」为主题,特邀青年…

2023年山东省职业院校技能大赛信息安全管理与评估第一阶段样题

2023年山东省职业院校技能大赛信息安全管理与评估样题 竞赛需要完成三个阶段的任务,分别完成三个模块,总分共计 1000 分。三个模块内容和分值分别是: \1. 第一阶段:模块一 网络平台搭建与设备安全防护(240 分钟&…

MAMBA介绍:一种新的可能超过Transformer的AI架构

有人说,“理解了人类的语言,就理解了世界”。一直以来,人工智能领域的学者和工程师们都试图让机器学习人类的语言和说话方式,但进展始终不大。因为人类的语言太复杂,太多样,而组成它背后的机制,…

华为数通---配置ARP安全综合功能案例

简介 ARP(Address Resolution Protocol)安全是针对ARP攻击的一种安全特性,它通过一系列对ARP表项学习和ARP报文处理的限制、检查等措施来保证网络设备的安全性。ARP安全特性不仅能够防范针对ARP协议的攻击,还可以防范网段扫描攻击…