深度学习在单线性回归方程中的应用--TensorFlow实战详解

深度学习在单线性回归方程中的应用–TensorFlow实战详解

文章目录

  • 深度学习在单线性回归方程中的应用--TensorFlow实战详解
    • 1、人工智能<-->机器学习<-->深度学习
    • 2、线性回归方程
    • 3、TensorFlow实战解决单线性回归问题
      • 人工数据集生成
      • 构建模型
      • 训练模型
      • 定义损失函数
      • 定义优化器
      • 创建会话
      • 迭代训练
      • 训练结果
      • 打印参数和预测值
    • 4、完整代码demo

提到人工智能,绕不开的话题就是机器学习了,因为机器学习是人工智能很重要的一个分支。而今天要讨论的深度学习又是机器学习的一个很重要的分支。

目前的主流深度学习框架有

  • TensorFlow
  • Keras
  • Theano

1、人工智能<–>机器学习<–>深度学习

其实机器学习就是让机器自己学习的算法,我们需要训练出这个算法,在利用这个算法解决一些问题。机器学习和人工智能的关系就是,机器学习是技术,人工智能是概念,机器学习技术用来解决人工智能出现的问题。

显而易见的说,机器学习就是训练如下的一个模型,用这个模型解决问题,那么如何训练呢?那就是通过历史数据来训练。

img

深度学习是机器学习的一个子集,深度学习是利用深度的神经网络,将模型处理得更为复杂,从而使模型对数据的理解更加深入。

img

2、线性回归方程

首先要知道线性回归的概念,所谓回归是指:回归事物的本质和真相。线性是指通过一个已知条件x得到预测值y。我们中学学过的y=kx放在坐标系里讨论,就是一条直线,我们称其为:线性的。

所以线性回归方程我们可以抽象成如下:

img

它的图象可以表示为:

img

线性回归有一个特点就是,我们事先知道一个方程,然后代入x因变量,就可以得到y的值,只要我们知道这个方程,那么我们就掌握了预测未来的可能。在深度学习中,我们将x点成为 特征,将得到的y成为标签,而一堆特征我们称为 样本

那么我们对一个模型的训练过程就如下图:

img

机器学习要做的事情是:先给你一些点,也就是数据集,我们通过这个数据集训练出一个方程,也就是一个模型,然后再用这个模型去预测未来。

3、TensorFlow实战解决单线性回归问题

首先我们要知道利用深度学习算法训练一个模型的核心步骤:

  • 准备数据集
  • 构建模型
  • 训练模型
  • 进行预测

我们这里选用了TensorFlow框架进行训练。

单变量线性回归方程可以表示如下:

img

人工数据集生成

现在的已知条件是,我们有一堆点在这里,然后我们希望通过这些点找到上面的回归方程,这个回归方程就是我们说的模型,这个找方程的过程叫做:模型训练。方程找到了,也就是计算出了w和b了,那么我们就可以通过这个模型预测未知的y值了。

img

这些点我们可以通过随机生成人工数据集,为了让这些点均匀分布,不会分布在一条线上,我们还要加上噪音振幅。

# 图象实现
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tensorflow.compat.v1 as tf
#关闭Eager Execution
tf.compat.v1.disable_eager_execution()
#设置随机数种子
np.random.seed(5)

然后生成100个点,每个点的取值在-1,1之间

x_data=np.linspace(-1,1,100)
# y=2x+1+噪声
y_data=2*x_data+1.0+np.random.randn(*x_data.shape)*0.4

利用matplotlib画出结果

# 画出随机数生成的散点图
plt.scatter(x_data,y_data)
# 画出我们的目标,也就是希望得到的函数y=2*x+1
plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)

img

我们画出这个图想要说明的是,当前选用的数据集点生成模型是可行的,因为点和我们期待生成的那个函数是可以拟合的,大致相似的。

构建模型

模型结构如下:

x=tf.placeholder("float",name="x")
y=tf.placeholder("float",name="y")
# 定义模型函数
def model(x,w,b):return tf.multiply(x,w)+bw=tf.Variable(1.0,name="w0")
b=tf.Variable(0.0,name="b0")
pred=model(x,w,b)#预测值的计算

训练模型

设置训练参数,在这里 learn_rate学习率和迭代次数 train_epochs超参量参数,也就是我们在训练一个模型的时候必须自己人工定义的参数,通过这种参数去让模型更好的拟合,达到我们希望的效果。我们常说调参调参就是指这个。

#迭代次数
train_epochs=10
#学习率
learn_rate=0.05

定义损失函数

损失函数的作用是指导模型收敛的方向,他表示描述预测值和真实值之间的误差,是一个数。

常见的损失函数有:

  • L1损失函数
  • l2损失函数
  • 均方误差MSE

这里我们使用MSE均方差损失函数。所谓均方差损失函数就是每个点的y值减掉预测的y值在进行平方,然后把这些点的平方都加起来,最后加和结果除以总的点个数。专业的解释是:每个样本的平均平方损失

img

# 采用均方差作为损失函数
loss_function=tf.reduce_mean(tf.square(y-pred))

定义优化器

我们定义优化器的目的是减少模型的损失,使得损失最小化。我们在优化器 Optimzer中会通过 learn_rate学习率和 loss_function损失函数 来优化收敛我们的模型。我们在讨论损失函数的时候,我们希望损失最小,那么我们就要求出损失函数的最小值。怎么求呢?我们需要用到 梯度下降算法

# 梯度下降优化器
optimizer=tf.train.GradientDescentOptimizer(learn_rate).minimize(loss_function)

如何理解梯度下降呢?首先需要知道这个东西是为了降低损失的,降低损失函数的值

梯度下降法的基本思想可以类比为一个下山的过程,如下图所示函数看似为一片山林,红色的是山林的高点,蓝色的为山林的低点,蓝色的颜色越深,地理位置越低,则图中有一个低点,一个最低点。

img

假设这样一个场景:一个人被困在山上(图中红圈的位置),需要从山上下来(找到山的最低点,也就是山谷),但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的方向走,然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

img

假设这座山最陡峭的地方是无法通过肉眼立马观察出来的,而是需要一个复杂的工具来测量,同时,这个人此时正好拥有测量出最陡峭方向的工具。所以,此人每走一段距离,都需要一段时间来测量所在位置最陡峭的方向,这是比较耗时的。那么为了在太阳下山之前到达山底,就要尽可能的减少测量方向的次数。这是一个两难的选择,如果测量的频繁,可以保证下山的方向是绝对正确的,但又非常耗时,如果测量的过少,又有偏离轨道的风险。所以需要找到一个合适的测量方向的频率(多久测量一次),来确保下山的方向不错误,同时又不至于耗时太多,在算法中我们成为步长

在这里我们将步长称为 学习率,也就是上面代码中的 learn_rate。学习率不能过大过小,需要我们根据经验设置,过大过小都会导致模型拟合过度。

我们说一个点什么时候梯度最小?也就是说什么时候损失函数最小?

如下图我们对点进行求导,它的导数从数学的角度来说表示斜率,也就是斜线的陡峭程度,这个斜率的值其实就是我们说的梯度。斜线的方向就是我们说的梯度方向。

img

如下图,当点的斜率为0的时候,也就是梯度为0了,这个时候我们说这个模型的损失最小,模型最为拟合。

img

其实我们上面定义的优化器 GradientDescentOptimizer(learn_rate).minimize(loss_function)已经帮我们干了上面所有的事情,它直接通过我们设置好的步长学习率和损失函数,将我们的模型损失降到了最低,也就是上面这张图所需要的效果。

创建会话

sess=tf.Session()
# 所有变量初始化
init=tf.global_variables_initializer()
sess.run(init)

迭代训练

在模型训练阶段,设置多轮迭代,每次通过将样本逐个输入模型,进行梯度下降优化操作,每轮迭代以后,绘制出迭代曲线

# epoch就是训练轮数,这里为10
for epoch in range(train_epochs):for xs,ys in zip(x_data,y_data):_,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})#核心b0temp=b.eval(session=sess)w0temp=w.eval(session=sess)plt.plot(x_data,w0temp*x_data+b0temp)

训练结果

img

从图中可以得到,这个模型在训练3次以后就接近拟合的状态了。

打印参数和预测值

print("w:",sess.run(w))
print("b:",sess.run(b))
x_test=3.21 #这是预测值
predict=sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict)
target=2*x_test+1.0
print("目标值:%f" % target)

img

4、完整代码demo

环境:

  • Anaconda
  • Jupyter
  • Python3.5.2
  • TensorFlow2.0
%matplotlib inlineimport matplotlib.pyplot as plt
import numpy as np
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()np.random.seed(5)x_data=np.linspace(-1,1,100)
y_data=2*x_data+1.0+np.random.randn(*x_data.shape)*0.4
plt.scatter(x_data,y_data)
plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)x=tf.placeholder("float",name="x")
y=tf.placeholder("float",name="y")
def model(x,w,b):return tf.multiply(x,w)+bw=tf.Variable(1.0,name="w0")
b=tf.Variable(0.0,name="b0")
pred=model(x,w,b)#设置迭代次数和学习率、损失函数
train_epochs=10
learn_rate=0.05
loss_function=tf.reduce_mean(tf.square(y-pred))optimizer=tf.train.GradientDescentOptimizer(learn_rate).minimize(loss_function)sess=tf.Session()init=tf.global_variables_initializer()sess.run(init)for epoch in range(train_epochs):for xs,ys in zip(x_data,y_data):_,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})b0temp=b.eval(session=sess)w0temp=w.eval(session=sess)plt.plot(x_data,w0temp*x_data+b0temp)print("w:",sess.run(w))
print("b:",sess.run(b))x_test=3.21
predict=sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict)target=2*x_test+1.0
print("目标值:%f" % target)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/200832.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode1423. 可获得的最大点数

Every day a Leetcode 题目来源&#xff1a;1423. 可获得的最大点数 解法1&#xff1a;前缀和 后缀和 基于贪心的思想&#xff0c;要使得获得的点数最大&#xff0c;每次拿卡牌都应该选点数尽量高的卡牌。 但是拿卡牌有限制&#xff0c;每次行动&#xff0c;只可以从行的…

Android Chips(标签)

目录 一、流式布局标签发展历程 二、类型及使用 2.1 Chip.Action(默认值) 2.2 Chip.Entry 2.3 Chip.Filter 2.4 Chip.Choice 三、常用事件 3.1 OnClickListener 3.2 OnCheckedChangeListener 3.3 OnCloseIconClickListener 四、ChipGroup 4.1 ChipGroup Chip.Choi…

力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)

Problem: 973. 最接近原点的 K 个点 文章目录 题目描述思路解题方法复杂度Code 题目描述 给定一个数组 points &#xff0c;其中 points[i] [xi, yi] 表示 X-Y 平面上的一个点&#xff0c;并且是一个整数 k &#xff0c;返回离原点 (0,0) 最近的 k 个点。 这里&#xff0c;平面…

获取网络ppt资源

背景&#xff1a; ​ 某度上有很多优质的PPT资源和文档资源&#xff0c;但是大多数需要付费才能获取。对于一些经济有限的用户来说&#xff0c;这无疑是个遗憾&#xff0c;因为我们更倾向于以免费的方式获取所需资源。 解决方案&#xff1a; ​ 然而&#xff0c;幸运的是&am…

Python 网络爬虫(四):初识网络爬虫

《Python入门核心技术》专栏总目录・点这里 文章目录 什么是爬虫爬虫的工作原理应用场景反爬虫合法和道德问题Robots 协议练习爬虫的一些网站总结 大家好&#xff0c;我是水滴~~ 在当今数字化时代&#xff0c;互联网上充斥着大量的数据和信息&#xff0c;而我们常常需要从这个…

思维模型 移情效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。情感迁移&#xff0c;爱屋及乌。 1 移情效应的应用 1.1 移情效应在市场营销中应用-多芬&#xff08;Dove&#xff09;“真美运动” 多芬&#xff08;Dove&#xff09;是一家知名的个人护理…

我们是如何让微服务在实践中“活色生香”的?

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容1. 前言2. 请求的路径分析3. 服务周期分析4. 请求格式转换5. 服务层设计6. 业务服务层设计7. 安全防护及策略8. 结论 &#x1f4e2;文章总结&#x1f4e5;博主目标 &#x1f50a;博主介绍 &#x1f31f;我是廖志伟&#xf…

带你学C语言:带你学函数

目录 &#x1f30d;函数的概念 ★★☆☆☆库函数 ★★★★☆自定义函数 ★★★☆☆形参与实参 ★★★☆☆return语句 ★★★☆☆数组做函数参数 ★★★☆☆嵌套调用和链式访问 ★★★☆☆函数的声明和定义 ✍结束语 &#x1f30d;函数的概念 数学中我们其实就见过函数…

系统运维安全之病毒自检及防护

一、前言 Linux勒索病毒&#xff08;Linux ransomware&#xff09;是一种最令人恶心的计算机恶意病毒&#xff0c;它以侵入Linux系统&#xff0c;捆绑文件并要求支付赎金才能释放文件为主要目的&#xff0c;破坏用户的数据&#xff0c;造成数据讹诈。Linux勒索病毒它们的存在已…

算法通关村第十七关-青铜挑战贪心算法思想

大家好我是苏麟 , 今天说说贪心算法 . 贪心思想很难用理论解释&#xff0c;本文我们先通过案例来感受一下贪心是如何解决问题的 大纲 难以理解的贪心算法贪心问题举例分发饼干柠檬水找零分发糖果 难以理解的贪心算法 贪心的思想非常不好解释&#xff0c;而且越使用权威的语言解…

如何解读手机APP入侵与逆向破解

如果您有耐心看完这篇文章&#xff0c;您将懂得如何着手进行app的分析、追踪、注入等实用的破解技术&#xff0c;另外&#xff0c;通过“入侵”&#xff0c;将帮助您理解如何规避常见的安全漏洞&#xff0c;文章大纲&#xff1a; 简单介绍ios二进制文件结构与入侵的原理介绍入…

报错:Parsed mapper file: ‘file mapper.xml

报错 &#xff1a; Logging initialized using class org.apache.ibatis.logging.stdout.StdOutImpl adapter. Registered plugin: com.github.yulichang.interceptor.MPJInterceptor3b2c8bda Parsed mapper file: file [/Mapper.xml] application无法启动 我这边产生原因是项…

P1004 [NOIP2000 提高组] 方格取数

洛谷的题 网址&#xff1a;P1004 [NOIP2000 提高组] 方格取数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 动态规划&#xff0c;太tm爽了 一般来说是走一次的&#xff0c;这个是走两次&#xff0c;就变难了 怎么办呢&#xff1f; 一个方法是&#xff1a;同时开始走 先…

自定义TypeHandler 将mysql返回的逗号分隔的String转换到List

sql执行如下&#xff1a; 这里我定义的接受类&#xff1a; 但是这里报了错JSON parse error: Cannot deserialize value of type java.util.ArrayList<java.lang.String>from Object value (token JsonToken.START_OBJECT); nested exception is com.fasterxml.jackson…

Java抽象类(abstract class)和接口(interface)的区别——面试

1.抽象类&#xff08;abstract class&#xff09;和接口&#xff08;interface&#xff09;的区别&#xff1a; 抽象类可以有构造方法&#xff0c;接口中不能有构造方法。 抽象类中可以有普通成员变量&#xff0c;接口中没有普通成员变量。抽象类中可以包含非抽象的普通方法&am…

ultralytics yolo图像分类训练案例;pytorch自有数据集图像分类案例

1、ultralytics yolo图像分类训练案例 优点:使用方便,训练过程评估指标可以方便查看 缺点:自带模型少,可选择自定义小 参考:https://docs.ultralytics.com/tasks/classify/#val https://blog.csdn.net/weixin_42357472/article/details/131412851 1)数据集格式 https://…

dockerdesktop 制作asp.net core webapi镜像-连接sqlserver数据库容器

1.使用visual studio 创建 asp.net core webapi项目 选择启用docker 会生成Dockerfile文件 2.使用efcore连接数据库&#xff0c;安装efcore的包 <ItemGroup><PackageReference Include"Microsoft.VisualStudio.Azure.Containers.Tools.Targets" Version&qu…

Linux系统调试课:PCIe调试手段

文章目录 一、lspci 命令二、pciutils 工具沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本文我们要介绍pcie调试手段。 一、lspci 命令 通过lspci可以查看当前系统挂载了哪些pci设备。 lspci - 列出 PCI 设备 lspci 命令可以列出计算机中所有 PCI 设备的详细信息,…

【Transformer论文精读系列】(一)如何理解Transformer里的注意力机制?

论文&#xff1a;Attention Is All You Need 参考李沐老师的讲解视频&#xff1a; Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili 其他参考&#xff1a; 超强动画&#xff0c;一步一步深入浅出解释Transformer原理&#xff01;_哔哩哔哩_bilibili Transformer论文逐段…

JVM虚拟机:JVM参数之X参数

本文重点 本文将学习x参数 x参数 -Xint:解释执行 -Xcomp&#xff1a;第一次使用就编译成本地代码 -Xmixed&#xff1a;混合模式&#xff08;Javac、java&#xff0c;先编译后执行&#xff09;