Token 和 N-Gram、Bag-of-Words 模型释义

ChatGPT(GPT-3.5)和其他大型语言模型(Pi、Claude、Bard 等)凭何火爆全球?这些语言模型的运作原理是什么?为什么它们在所训练的任务上表现如此出色?

虽然没有人可以给出完整的答案,但了解自然语言处理的一些基本概念有助于我们了解 LLM 内在工作原理。尤其是了解 Token 和 N-gram 对于理解几乎所有当前自回归和自编码模型都十分重要。本文为“「X」Embedding in NLP”的进阶版,将带大家详解 NLP 的核心基础!

01.Token 和 N-gram

在 C/C++ 的入门计算机科学课程中,通常很早就会教授字符串的概念。例如,C 语言中的字符串可以表示为以空字符终止的字符数组:

char my_str[128] = "Milvus";

在这个例子中,每个字符都可以被视为一个离散单位,将它们组合在一起就形成了有意义的文本——在这种情况下,my_str表示了世界上最广泛采用的向量数据库。

简单来说,这就是 N-gram 的定义:一系列字符(或下一段讨论的其他离散单位),当它们连在一起时,具有连贯的意义。在这个实例中,N 对应于字符串中的字符总数(在这个例子是 7)。

N-gram 的概念不必局限于单个字符——它们也可以扩展到单词。例如,下面的字符串是一个三元组(3-gram)的单词:

char my_str[128] = "Milvus vector database"

在上面的例子中,很明显my_str是由三个单词组成的,但一旦考虑到标点符号,情况就变得有些复杂:

char my_str[128] = "Milvus's architecture is unparalleled"

上面的字符串,严格来说,是四个单词,但第一个单词Milvus's是使用另一个单词Milvus作为基础的所有格名词。对于语言模型来说,将类似单词分割成离散的单位是有意义的,这样就可以保留额外的上下文:Milvus's。这些被称为 Token,将句子分割成单词的基本方法称为标记化(Tokenization)。采用这种策略,上述字符串现在是一个由 5 个 Token 组成的 5-gram。

所有现代语言模型在数据转换之前都会进行某种形式的输入标记化。市面上有许多不同的标记器——例如,WordPiece 是一个流行的标记器,它被用在大多数 BERT 的变体中。在这个系列中我们没有过多深入标记器的细节——对于想要了解更多的人来说,可以查看 Huggingface的标记器总结

02.N-gram 模型

接下来,我们可以将注意力转向 N-gram 模型。简单来说,n-gram 模型是一种简单的概率语言模型,它输出一个特定 Token 在现有 Token 串之后出现的概率。例如,我们可以建模一个特定 Token 在句子或短语中跟随另一个Token(∣)的概率(p):

p(database∣vector)=0.1

上述声明表明,在这个特定的语言模型中,“vector”这个词跟在“database”这个词后面的概率为 10%。对于 N-gram 模型,这些模型总是通过查看输入文档语料库中的双词组的数量来计算,但在其他语言模型中,它们可以手动设置或从机器学习模型的输出中获取。

上面的例子是一个双词模型,但我们可以将其扩展到任意长度的序列。以下是一个三元组的例子:

p(database∣Milvus,vector)=0.9

这表明“database”这个词将以 90% 的概率跟在“Milvus vector”这两个 Token 之后。同样,我们可以写成:

p(chocolate∣Milvus,vector)=0.001

这表明在“Milvus vector”之后出现的词不太可能是“chocolate”(确切地说,概率为0.1%)。将这个应用到更长的序列上:

p(Milvus∣the,most,widely,adopted,vector,database,is)=0.999

接下来讨论一个可能更重要的问题:我们如何计算这些概率?简单而直接的答案是:我们计算文档或文档语料库中出现的次数。我将通过以下 3 个短语的例子来逐步解释(每个句子开头的代表特殊的句子开始标记)。为了清晰起见,我还在每个句子的结尾句号和前一个词之间增加了额外的空格:

  • <S>Milvus是最广泛采用的向量数据库

  • <S>使用Milvus进行向量搜索

  • <S>Milvus很棒

列出以<S>Milvusvector开头的双词组:

some_bigrams = {these bigrams begin with <S>
    ("<S>""Milvus"): 2,
    ("<S>""vector"): 1,these bigrams begin with Milvus
    ("Milvus""is"): 1,
    ("Milvus""."): 1,
    ("Milvus""rocks"): 1,these bigrams begin with vector
    ("vector""database"): 1,
    ("vector""search"): 1
}

根据这些出现的情况,可以通过对每个 Token 出现的总次数进行规范化来计算概率。例如:

alt

类似:

alt

有了这些知识,我们就可以编写一些代码来构建一个双词模型。为了简单起见,我们假设所有输入文档中的每个 Token 都由一些空白字符分隔(回想一下前面的部分,现代标记器通常有更复杂的规则)。让我们从定义模型本身开始,即双词计数和 Token 计数:

from typing import Dict, Tuple
from collections import defaultdict
#keys correspond to tokensvalues are the number of occurences
token_counts = defaultdict(int)

#keys correspond to 2-tuples bigram pairsvalues are the number of occurences
bigram_counts = defaultdict(int)

def build_bigram_model(corpus):
    """Bigram model.  """
    #loop through all documents in the corpus
    for doc in corpus:
        prev = "<S>"
        for word in doc.split():
            #update token counts
            token_counts[word] += 1
            #update bigram counts
            bigram = (prev, word)
            bigram_counts[bigram] += 1
            prev = word
        #add a dummy end-of-sequence token so probabilities add to one
        bigram_counts[(word, "</S>")] += 1
    return (token_counts, bigram_counts)

def bigram_probability(bigram: Tuple[str]):
    """Computes the likelihood of the bigram from the corpus.  """
    return bigram_counts[bigram] / token_counts[bigram[0]]

然后,build_bigram_model会遍历整个文档语料库,先按空白字符分割每个文档,再存储双词组和 Token 计数。然后,我们可以调用bigram_probability函数,该函数查找相应的双词组计数和 Token 计数,并返回比率。

我们在 Milvus 的文档上测试这个模型,大家可以在此下载文档,并尝试上面的代码。

with open("README.md""r"as f:
    build_bigram_model([f.read()])

print(bigram_probability(("vector""database")))
0.3333333333333333

03.词袋模型

除了 N-gram,另一个值得讨论的是词袋模型(BoW)。词袋模型将文档或文档语料库表示为一个无序的 Token 集合——从这个意义上说,它保持了每个 Token 出现的频率,但忽略了它们在每个文档中出现的顺序。因此,BoW 模型中的整个文档可以转换为稀疏向量,其中向量的每个条目对应于文档中特定单词出现的频率。在这里,我们将文档“Milvus 是最广泛采用的向量数据库。使用Milvus进行向量搜索很容易。”表示为一个 BoW稀疏向量:

limited vocabularybow_vector = [   
 0# a    
 1# adopted    
 0# bag    
 0# book    
 0# coordinate    
 1# database    
 1# easy    
 0# fantastic    
 0# good    
 0# great    
 2# is    
 0# juggle    
 2# Milvus    
 1# most    
 0# never    
 0# proof    
 0# quotient    
 0# ratio    
 0# rectify    
 1# search    
 1# the    
 0# undulate    
 2# vector    
 1# widely    
 1# with    
 0# yes    
 0# zebra
 ]

这些稀疏向量随后可以用于各种 NLP 任务,如文本和情感分类。关于词袋模型的训练和推理学习可参考 Jason Brownlee的博客。

虽然词袋模型易于理解和使用,但它们有明显的局限性,即无法捕捉上下文或单个 Token 的语义含义,这意味着它们不适合用于最简单的任务之外的任何事情。

04.总结

在这篇文章中,我们讨论了自然语言处理的三个核心基础:标记化(Tokenization)、N-gram 和词袋模型。围绕 N-gram 的概念有助于后续了解关于自回归和自编码模型的训练方式。在下一个教程中,我们将分析“现代”NLP,即循环网络和文本 embedding。敬请期待!

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/200739.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWS攻略——VPC初识

大纲 在网络里启动一台可以ssh上去的机器查看区域、VPC和子网创建EC2连接Web端连接客户端连接 知识点参考资料 VPC是在AWS架构服务的基础&#xff0c;有点类似于我们在机房里拉网线和设置路由器等。等这些设施完备后&#xff0c;我们才能考虑给机器部署服务。而很多初识AWS的同…

AI助力智慧农业,基于YOLOv3开发构建农田场景下的庄稼作物、田间杂草智能检测识别系统

智慧农业随着数字化信息化浪潮的演变有了新的定义&#xff0c;在前面的系列博文中&#xff0c;我们从一些现实世界里面的所见所想所感进行了很多对应的实践&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a; 《自建数据集&#xff0c;基于YOLOv7开发构建农田场景下杂草…

园区规划技术要点

&#xff08;一&#xff09;技术点介绍 1.WLAN&#xff1a;无线局域网WLAN&#xff08;Wireless Local Area Network&#xff09;是一种无线计算机网络&#xff0c;使用无线信道代替有线传输介质连接两个或多个设备形成一个局域网LAN&#xff08;Local Area Network&#xff09…

JavaScript <md5加密的两种不同输出结果分析>--案例(二点一)

前言: 问题是这样的,在浏览器中看到这段代码 然后在控制台进行输出.得到: 紧接着,就在,js文件里面进行转译: 可是,得到的结果是: 这是问题!!! 正题: 为什么相同的js代码,在 .js 文件中的输出与 Chrome 控制台中的输出不一样? 环境差异&#xff1a;不同的JavaScript环境&…

从零开始训练一个ChatGPT大模型(低资源,1B3)

macrogpt-prertrain 大模型全量预训练(1b3), 多卡deepspeed/单卡adafactor 源码地址&#xff1a;https://github.com/yongzhuo/MacroGPT-Pretrain.git 踩坑 1. 数据类型fp16不太行, 很容易就Nan了, 最好是fp32, tf32, 2. 单卡如果显存不够, 可以用优化器adafactor, 3. 如果…

基于STM32驱动的压力传感器实时监测系统

本文介绍了如何使用STM32驱动压力传感器进行实时监测。首先&#xff0c;我们会介绍压力传感器的工作原理和常见类型。然后&#xff0c;我们将介绍如何选择合适的STM32单片机和压力传感器组合。接下来&#xff0c;我们会详细讲解如何使用STM32驱动压力传感器进行数据采集和实时监…

Ansys Zemax | 手机镜头设计 - 第 3 部分:使用 STAR 模块和 ZOS-API 进行 STOP 分析

附件下载 联系工作人员获取附件 本文是 3 篇系列文章的一部分&#xff0c;该系列文章将讨论智能手机镜头模组设计的挑战&#xff0c;从概念、设计到制造和结构变形的分析。本文是三部分系列的第三部分。它涵盖了使用 Ansys Zemax OpticStudio Enterprise 版本提供的 STAR 技术…

回归预测 | MATLAB实现CNN-BiLSTM(卷积双向长短期记忆神经网络

效果一览 基本介绍 提出一种同时考虑时间与空间因素的卷积&#xff0d;双向长短期记忆&#xff08; CNN-BiLSTM&#xff09;模型&#xff0c;将具有空间局部特征提取能力的卷积神经网络&#xff08;CNN&#xff09;和具有能同时考虑前后方向长时间信息的双向长短期记忆&#xf…

不可变集合

概述 不可变集合&#xff0c;就是不可被修改的集合。 集合的数据项在创建的时候提供&#xff0c;并且在整个生命周期中都不可改变,否则报错。 为什么要创建不可变集合&#xff1f; 如果某个数据不能被修改&#xff0c;把它防御性地拷贝到不可变集合中是个很好的实践。 或者…

CoreDNS实战(五)-接入prometheus监控

1 背景 Prometheus插件作为coredns的Plugins&#xff0c;默认情况下是内置在coredns中&#xff0c;如果是自己编译安装的版本&#xff0c;需要注意在编译安装的时候的plugin.cfg文件中添加了prometheus:metrics&#xff0c;这样才能确保编译成功。 # 首先我们检查一下运行的版…

Mabatis处理异常屏蔽SQL返回前端全局异常捕获处理

文章目录 Mabatis处理异常屏蔽SQL返回前端全局异常捕获处理结论1 java异常体系2 Spring框架异常处理3 定位Spring框架转化为哪种unchecked异常3.1 捕获RuntimeException定位Spring框架转化抛出的异常类3.2 进一步查看包名判断3.3 识别MyBatisSystemException下级实现3.3 识别My…

【Linux服务器Java环境搭建】07 在linux中安装MySql,以及对MySQL的配置与远程连接

【Linux服务器Java环境搭建】01购买云服务器以及在服务器中安装Linux系统 【Linux服务器Java环境搭建】02 通过xftp和xshell远程连接云服务器 【Linux服务器Java环境搭建】03 Git工具安装 【Linux服务器Java环境搭建】04 JDK安装&#xff08;JAVA环境安装&#xff09; 【Linux服…

Hadoop学习笔记(HDP)-Part.02 核心组件原理

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

【漏洞复现】万户协同办公平台ezoffice wpsservlet接口存在任意文件上传漏洞 附POC

漏洞描述 万户ezOFFICE集团版协同平台以工作流程、知识管理、沟通交流和辅助办公四大核心应用 万户ezOFFICE协同管理平台是一个综合信息基础应用平台。 万户协同办公平台ezoffice wpsservlet接口存在任意文件上传漏洞。 免责声明 技术文章仅供参考,任何个人和组织使用网络应…

CETN01 - How to Use Cloud Classroom

文章目录 I. Introduction to Cloud ClassroomII. How to Use Cloud Classroom1. Publish Resources2. Conduct Activities3. Class Teaching Reports4. View Experience Values5. Performance in Cloud Classroom I. 云课堂介绍II. 如何使用云课堂1. 发布资源2. 进行活动3. 班…

007:vue实现与iframe实现页面数据通信

首页先搭建一个html页面和vue页面&#xff0c;在vue页面中&#xff0c;嵌入我们需要的iframe页面 文章目录 1. 搭建 html 页面和 vue 页面2. 实现 iframe 向 vue 页面通信3. 在实现 vue 向 iframe 页面通信 1. 搭建 html 页面和 vue 页面 暂定为 iframeDemo.html 和 vueDemo.v…

python文件操作知识

【一】操作流程&#xff1a; 打开文件&#xff0c;得到一个文件句柄&#xff08;对象&#xff09;&#xff0c;赋给一个对象。通过文件句柄对文件进行操作。关闭文件。 【 二 】 使用方法 open&#xff08;路径 文件名&#xff0c;读写模式&#xff09; 如下&#xff1a; …

MySQL主从复制(一主一从、双主双从)

一、概述 1. 数据库主从概念、优点、用途 主从数据库是什么意思呢&#xff0c;主是主库的意思&#xff0c;从是从库的意思。数据库主库对外提供读写的操作&#xff0c;从库对外提供读的操作。   数据库为什么需要主从架构呢&#xff1f; 高可用&#xff0c;实时灾备&#x…

MQTT框架和使用

目录 MQTT框架 1. MQTT概述 1.1 形象地理解三个角色 1.2 消息的传递 2. 在Windows上体验MQTT 2.1 安装APP 2.2 启动服务器 2.3 使用MQTTX 2.3.1 建立连接 2.3.2 订阅主题 2.3.3 发布主题 2.4 使用mosquitto 2.4.1 发布消息 2.4.2 订阅消息 3. kawaii-mqtt源码分析…

直面多云困境,聊聊F5分布式云的破局之道

在数字化浪潮的大背景下&#xff0c;我们迎来了一个万物上云的时代。Gartner的调查数据显示&#xff0c;81%的公有云用户选择两个或两个以上的云服务供应商。对企业来说&#xff0c;充分利用多云网络可以实现业务的成功转型和增长。然而机遇与挑战并存&#xff0c;本文从多云网…