大家好,今天我们分享一个神奇的网站,提供各种可视化图片的代码和详解,生信小博士公众号内回复冒号后面的关键词领取网站地址:神奇网站
1.一R代码添加显著性
1#1----
set.seed(123)
library(ggplot2)
library(ggstatsplot)
ggbetweenstats(
data = iris,
x = Species,
y = Sepal.Length,
title = "Distribution of sepal length across Iris species"
)
还有详细参数的解释:
2.还可以换一种方式展示
2#2------
library(ggpubr)
# Load data
data("ToothGrowth")
df <- ToothGrowth
head(df, 4)
# Add p-values comparing groups
# Specify the comparisons you want
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
ggboxplot(df, x = "dose", y = "len",
color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
add = "jitter", shape = "dose")+ stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
stat_compare_means(label.y = 50) # Add global p-value
# Violin plots with box plots inside
# :::::::::::::::::::::::::::::::::::::::::::::::::::
# Change fill color by groups: dose
# add boxplot with white fill color
ggviolin(df, x = "dose", y = "len", fill = "dose",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
add = "boxplot", add.params = list(fill = "white"))+
stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ # Add significance levels
stat_compare_means(label.y = 50) # Add global the p-value
3. 单细胞的密度图
3# 3 单细胞密度图----
pbmc=readRDS("~/gzh/pbmc3k_final.rds")
library(Seurat)
p=DimPlot(pbmc,label = TRUE)
dat=p$data
head(dat)
#install.packages("ggpointdensity")
library(ggpointdensity)
ggplot(data = dat, mapping = aes(x = UMAP_1, y = UMAP_2)) +
geom_pointdensity(adjust = 4) +
viridis:: scale_color_viridis()
4 生存曲线
4 #4 生存曲线------
#install.packages('ggsurvfit')
library(ggsurvfit)
#> Loading required package: ggplot2
p <- survfit2(Surv(time, status) ~ surg, data = df_colon) |>
ggsurvfit(linewidth = 1) +
add_confidence_interval() +
add_risktable() +
add_quantile(y_value = 0.6, color = "gray50", linewidth = 0.75) +
scale_ggsurvfit()
p
p +
# limit plot to show 8 years and less
coord_cartesian(xlim = c(0, 8)) +
# update figure labels/titles
labs(
y = "Percentage Survival",
title = "Recurrence by Time From Surgery to Randomization",
)