分布式ID服务实践

背景

分布式场景下需要一个全局 ID 来标识唯一性,比如在单数据库时通过表唯一主键即可实现唯一 ID,分库分表时就需要全局唯一 ID。

业务对唯一 ID 的要求如下:

  • 全局唯一性

不能出现重复的 ID 号,既然是唯一标识,这是最基本的要求。

  • 趋势递增、单调递增

保证下一个 ID 一定大于上一个 ID。

  • 信息安全

如果 ID 是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定 URL 即可;
如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要 ID 无规则、不规则。

同时除了对 ID 号码自身的要求,业务还对 ID 号生成系统的可用性要求极高。想象一下,如果 ID 生成系统不稳定,大量依赖 ID 生成系统,比如订单生成等关键动作都无法执行。所以一个 ID 生成系统还需要做到平均延迟和 TP999 延迟都要尽可能低。最好能达到可用性 5 个 9、高 QPS。

方案

UUID

UUID(Universally Unique Identifier)的标准型式包含 32 个 16 进制数字,以连字号分为五段,形式为 8-4-4-4-12 的 36 个字符,示例:550e8400-e29b-41d4-a716-446655440000,到目前为止业界一共有 5 种方式生成 UUID,详情见 IETF 发布的 UUID 规范 A Universally Unique IDentifier (UUID) URN Namespace。

优点:

  • 性能非常高:本地生成,没有网络消耗。

缺点:

  • 不易于存储:UUID 太长,16 字节 128 位,通常以 36 长度的字符串表示,很多场景不适用。
  • 信息不安全:基于 MAC 地址生成 UUID 的算法可能会造成 MAC 地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
  • ID 作为主键时在特定的环境会存在一些问题,比如做 DB 主键的场景下,UUID 就非常不适用:

1、MySQL 官方有明确的建议主键要尽量越短越好[4],36 个字符长度的 UUID 不符合要求。
2、对 MySQL 索引不利:如果作为数据库主键,在 InnoDB 引擎下,UUID 的无序性可能会引起数据位置频繁变动,严重影响性能。在 MySQL InnoDB 引擎中使用的是聚集索引,由于多数 RDBMS 使用 B-tree 的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。

可以直接使用 jdk 自带的 UUID,原始生成的是带中划线的,如果不需要,可自行去除:

public class UUIDTest {public static void main(String[] args) {String uuid = UUID.randomUUID().toString();System.out.println(uuid);uuid = uuid.replaceAll("-", "");System.out.println(uuid);/*** f5d728aa-5c07-4fb5-bf58-18c232d2fae8* f5d728aa5c074fb5bf5818c232d2fae8*/}
}

雪花算法

这种方案大致来说是一种以划分命名空间(UUID 也算,由于比较常见,所以单独分析)来生成 ID 的一种算法,Snowflake 是 Twitter 开源的分布式 ID 生成算法。Snowflake 把 64-bit 分别划分成多段,分开来标示机器、时间等,比如在 snowflake 中的 64-bit 分别表示如下图所示:
image.png
第 0 位:符号位(标识正负),始终为 0,没有用,不用管。
第 1~41 位:一共 41 位,用来表示时间戳,单位是毫秒,可以支撑 2 ^41 毫秒(约 69 年)。
第 42~52 位:一共 10 位,一般来说,前 5 位表示机房 ID,后 5 位表示机器 ID(实际项目中可以根据实际情况调整),这样就可以区分不同集群/机房的节点,这样就可以表示 32 个 IDC,每个 IDC 下可以有 32 台机器。
第 53~64 位:一共 12 位,用来表示序列号。 序列号为自增值,代表单台机器每毫秒能够产生的最大 ID 数(2^12 = 4096),也就是说单台机器每毫秒最多可以生成 4096 个 唯一 ID。
理论上 snowflake 方案的 QPS 约为 409.6w/s,这种分配方式可以保证在任何一个 IDC 的任何一台机器在任意毫秒内生成的 ID 都是不同的。
有很多基于 Snowflake 算法的开源实现比如美团的 Leaf、百度的 UidGenerator(自 18 年后,UidGenerator 就基本没有再维护了,[https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md](https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md))),并且这些开源实现对原有的 Snowflake 算法进行了优化。在实际项目中,我们一般也会对 Snowflake 算法进行改造,最常见的就是在算法生成的 ID 中加入业务类型信息。

优点:

  • 毫秒数在高位,自增序列在低位,整个 ID 都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成 ID 的性能也是非常高的。
  • 可以根据自身业务特性分配 bit 位,非常灵活。

缺点:

  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

当然,在我们自己的项目如果不想自行实现唯一性 ID,还可以利用外部中间件,比如 Mongdb objectID,它也可以算作是和 snowflake 类似方法,通过“时间+机器码+pid+inc”共 12 个字节,通过 4+3+2+3 的方式最终标识成一个 24 长度的十六进制字符。
其次 Seata 内置了一个分布式 UUID 生成器,用于辅助生成全局事务 ID 和分支事务 ID,我们同样可以拿来使用,完整类名为:io.seata.common.util.IdWorker

MYSQL

1) 创建一个数据库表

CREATE TABLE `sequence_id` (`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,`stub` char(10) NOT NULL DEFAULT '',PRIMARY KEY (`id`),UNIQUE KEY `stub` (`stub`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

stub 字段无意义,只是为了占位,便于我们插入或者修改数据。并且,给 stub 字段创建了唯一索引,保证其唯一性。
2)通过 replace into 来插入数据

BEGIN;
REPLACE INTO sequence_id (stub) VALUES ('stub');
SELECT LAST_INSERT_ID();
COMMIT;

插入数据这里,我们没有使用 insert into 而是使用 replace into 来插入数据。replace 是 insert 的增强版,replace into 首先尝试插入数据到表中,如果发现表中已经有此行数据(根据主键或者唯一索引判断)则先删除此行数据,然后插入新的数据。否则,直接插入新数据。重复插入失败时是会生成新的 ID 的。

优点:

  • 非常简单,利用现有数据库系统的功能实现,成本小,有 DBA 专业维护。ID 号单调自增,存储消耗空间小。

缺点:

  • 支持的并发量不大、存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)
  • ID 没有具体业务含义
  • 安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! )
  • 每次获取 ID 都要访问一次数据库(增加了对数据库的压力,获取速度也慢)

对于 MySQL 性能问题,可用如下方案解决:在分布式系统中我们可以多部署几台机器,每台机器设置不同的初始值,且步长和机器数相等。比如有两台机器。设置步长 step 为 2,TicketServer1 的初始值为 1(1,3,5,7,9,11…)、TicketServer2 的初始值为 2(2,4,6,8,10…)。这是 Flickr(雅虎旗下图片分享网站)团队在 2010 年撰文介绍的一种主键生成策略(Ticket Servers: Distributed Unique Primary Keys on the Cheap )。为了实现上述方案分别设置两台机器对应的参数,TicketServer1 从 1 开始发号,TicketServer2 从 2 开始发号,两台机器每次发号之后都递增 2。
假设我们要部署 N 台机器,步长需设置为 N,每台的初始值依次为 0,1,2…N-1。
这种架构貌似能够满足性能的需求,但有以下几个缺点:
系统水平扩展比较困难,比如定义好了步长和机器台数之后,如果要添加机器该怎么做?假设现在只有一台机器发号是 1,2,3,4,5(步长是 1),这个时候需要扩容机器一台。可以这样做:把第二台机器的初始值设置得比第一台超过很多,比如 140(假设在扩容时间之内第一台不可能发到 140),同时设置步长为 2,那么这台机器下发的号码都是 140 以后的偶数。然后摘掉第一台,把 ID 值保留为奇数,比如 7,然后修改第一台的步长为 2。让它符合我们定义的号段标准,对于这个例子来说就是让第一台以后只能产生奇数。扩容方案看起来复杂吗?貌似还好,现在想象一下如果我们线上有 100 台机器,这个时候要扩容该怎么做?简直是噩梦。所以系统水平扩展方案复杂难以实现。
ID 没有了单调递增的特性,只能趋势递增,这个缺点对于一般业务需求不是很重要,可以容忍。
数据库压力还是很大,每次获取 ID 都得读写一次数据库,只能靠堆机器来提高性能。

Redis

通过 Redis 的 incr 命令即可实现对 id 原子顺序递增,例如:

127.0.0.1:6379> incr sequence_id_biz_type
(integer) 2

为了提高可用性和并发,我们可以使用 Redis Cluster。
除了高可用和并发之外,我们知道 Redis 基于内存,我们需要持久化数据,避免重启机器或者机器故障后数据丢失。很明显,Redis 方案性能很好并且生成的 ID 是有序递增的。
不过,我们也知道,即使 Redis 开启了持久化,不管是快照(snapshotting,RDB)、只追加文件(append-only file, AOF)还是 RDB 和 AOF 的混合持久化依然存在着丢失数据的可能,那就意味着产生的 ID 存在着重复的概率。

美团 Leaf

Leaf 这个名字是来自德国哲学家、数学家莱布尼茨的一句话: There are no two identical leaves in the world(世界上没有两片相同的树叶)。
Leaf 分别在 MySQL 和雪花上做了相应的优化,实现了 Leaf-segment 和 Leaf-snowflake 方案。

Leaf-segment

Leaf-segment 方案,在使用数据库的方案上,做了如下改变:
原 MySQL 方案每次获取 ID 都得读写一次数据库,造成数据库压力大。改为批量获取,每次获取一个 segment(step 决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。
各个业务不同的发号需求用 biz_tag 字段来区分,每个 biz_tag 的 ID 获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对 biz_tag 分库分表就行。
数据库表设计如下:
image.png
重要字段说明:
biz_tag:用来区分业务;
max_id:表示该 biz_tag 目前所被分配的 ID 号段的最大值;
step:表示每次分配的号段长度。
原来获取 ID 每次都需要写数据库,现在只需要把 step 设置得足够大,比如 1000。那么只有当 1000 个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从 1 减小到了1/step。
例如现在有 3 台机器,每台机器各取 1000 个,很明显在第一台 Leaf 机器上是 1~1000 的号段,当这个号段用完时,会去加载另一个长度为 step=1000 的号段,假设另外两台号段都没有更新,这个时候第一台机器新加载的号段就应该是3001~4000。同时数据库对应的 biz_tag 这条数据的 max_id 会从 3000 被更新成4000,更新号段的 SQL 语句如下:

Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit

优点:

  • Leaf 服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • ID 号码是趋势递增的 8byte 的 64 位数字,满足上述数据库存储的主键要求。
  • 容灾性高:Leaf 服务内部有号段缓存,即使 DB 宕机,短时间内 Leaf 仍能正常对外提供服务。可以自定义 max_id 的大小,非常方便业务从原有的 ID 方式上迁移过来。

缺点:

  • ID 号码不够随机,能够泄露发号数量的信息,不太安全。
  • TP999 数据波动大,当号段使用完之后还是会在获取新号段时在更新数据库的 I/O 依然会存在着等待,tg999 数据会出现偶尔的尖刺。
  • DB 宕机会造成整个系统不可用。

双 buffer 优化:
对于第二个缺点,Leaf-segment 做了一些优化,简单的说就是:
Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的 ID 下发时间取决于下一次从 DB 取回号段的时间,并且在这期间进来的请求也会因为 DB 号段没有取回来,导致线程阻塞。如果请求 DB 的网络和 DB 的性能稳定,这种情况对系统的影响是不大的,但是假如取 DB 的时候网络发生抖动,或者 DB 发生慢查询就会导致整个系统的响应时间变慢。
为此,希望 DB 取号段的过程能够做到无阻塞,不需要在 DB 取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的 TP999 指标。
采用双 buffer 的方式,Leaf 服务内部有两个号段缓存区 segment。当前号段已下发 10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前 segment 接着下发,循环往复。
通常推荐 segment 长度设置为服务高峰期发号 QPS 的 600 倍(10 分钟),这样即使 DB 宕机,Leaf 仍能持续发号 10-20 分钟不受影响。
每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。

Leaf 高可用容灾:
对于第三点“DB 可用性”问题,可以采用一主两从的方式,同时分机房部署,Master 和 Slave 之间采用半同步方式同步数据。美团内部使用了奇虎 360 的 Atlas 数据库中间件(已开源,改名为 DBProxy)做主从切换。当然这种方案在一些情况会退化成异步模式,甚至在非常极端情况下仍然会造成数据不一致的情况,但是出现的概率非常小。如果要保证 100% 的数据强一致,可以选择使用“类 Paxos算法”实现的强一致 MySQL 方案,如 MySQL 5.7 中的 MySQL Group Replication。但是运维成本和精力都会相应的增加,根据实际情况选型即可。

Leaf-snowflake

Leaf-segment 方案可以生成趋势递增的 ID,同时 ID 号是可计算的,不适用于订单 ID 生成场景,比如竞对在两天中午 12 点分别下单,通过订单 id 号相减就能大致计算出公司一天的订单量,这个是不能忍受的。面对这一问题,美团提供了 Leaf-snowflake 方案。
Leaf-snowflake 方案完全沿用 snowflake 方案的 bit 位设计,即是“1+41+10+12”的方式组装 ID 号。对于 workerID 的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf 服务规模较大,动手配置成本太高。所以使用 Zookeeper 持久顺序节点的特性自动对 snowflake 节点配置 wokerID。Leaf-snowflake 是按照下面几个步骤启动的:
启动 Leaf-snowflake 服务,连接 Zookeeper,在 leaf_forever 父节点下检查自己是否已经注册过(是否有该顺序子节点)。
如果有注册过直接取回自己的 workerID(zk 顺序节点生成的 int 类型 ID 号),启动服务。
如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的 workerID 号,启动服务。

弱依赖 ZooKeeper:
除了每次会去 ZK 拿数据以外,也会在本机文件系统上缓存一个 workerID 文件。当 ZooKeeper 出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。

解决时钟问题:
因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的 ID 号,需要解决时钟回退的问题。
首先在启动时,服务会进行检查:
1、新节点通过检查综合对比其余 Leaf 节点的系统时间来判断自身系统时间是否准确,具体做法是取所有运行中的 Leaf-snowflake 节点的服务 IP:Port,然后通过 RPC 请求得到所有节点的系统时间,计算 sum(time)/nodeSize,然后看本机时间与这个平均值是否在阈值之内来确定当前系统时间是否准确,准确正常启动服务,不准确认为本机系统时间发生大步长偏移,启动失败并报警。
2、在 ZooKeeper 中登记过的老节点,同样会比较自身系统时间和 ZooKeeper 上本节点曾经的记录时间以及所有运行中的 Leaf-snowflake 节点的时间,不准确同样启动失败并报警。
另外,在运行过程中,每隔一段时间节点都会上报自身系统时间写入 ZooKeeper 。
在服务运行过程中,机器的 NTP 同步也会造成秒级别的回退,由于强依赖时钟,对时间的要求比较敏感,美团建议有三种解决方案,一是可以直接关闭 NTP 同步;二是在时钟回拨的时候直接不提供服务直接返回 ERROR_CODE,等时钟追上即可,三是做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警。
从美团的实际运行情况来看,在 2017 年闰秒出现那一次出现过部分机器回拨,由于 Leaf-snowflake 的策略保证,成功避免了对业务造成的影响。

美团 Leaf 现状:
Leaf 在美团点评公司内部服务包含金融、支付交易、餐饮、外卖、酒店旅游、猫眼电影等众多业务线。目前 Leaf 的性能在 4C8G 的机器上 QPS 能压测到近 5万/s,TP999 1ms,已经能够满足大部分的业务的需求。每天提供亿数量级的调用量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/200318.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu22.04LTS配置rsync服务

Ubuntu22.04LTS配置rsync服务 近期准备同步一些文件,准备选用rsync,这里记录一下配置过程。 rsync是一个开源的快速备份工具,可以镜像保存整个目录树和文件系统。 rsync使用所谓的“rsync算法”来使本地和远程的文件保持同步。这个算法只传…

Kubernetes(K8s)安全认证-10

安全认证 访问控制概述 Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。所谓的安全性其实就是保证对Kubernetes的各种客户端进行认证和鉴权操作。 客户端 在Kubernetes集群中,客户端通常有两类: User Acco…

线程池,及7大参数,4大拒绝策略详解

线程池,及7大参数,4大拒绝策略详解 1. 前言 1.1 什么是线程池? 线程池是一种利用池化技术思想来实现的线程管理技术,主要是为了复用线程、便利地管理线程和任务、并将线程的创建和任务的执行解耦开来。我们可以创建线程池来复用…

基于模块化的智能变电站电气系统

摘要 本次设计是我们的毕业设计,本次设计的变电站的类型为地区变电站,是为了满足市区生产和生活的要求,根据老师给出的设计资料和要求,结合所学的基础知识和文献资料所做的。通过本设计,对以前所学的知识加强了理解和掌握&#x…

第19章 正则表达式 - C++

第19.1节 介绍 正则表达式库提供表示正则表达式的类,正则表达式是一种用于在字符串中匹配模式的微型语言。下列数种对象上的操作能刻画几乎所有带正则表达式的操作: 目标序列。为模式而搜索到的字符序列。这可以是二个迭代器所指定的范围、空终止字符串…

【4】密评-网络和通信安全测评

0x01 依据 GB/T 39786 -2021《 信息安全技术 信息系统密码应用基本要求》针对等保三级系统要求: 网络和通信层面: a)应采用密码技术对通信实体进行身份鉴别,保证通信实体身份的真实性; b)宜采用密码…

Java实现微信小程序支付前后端

微信小程序支付的前后端实现可以分为以下几个步骤: 微信开放平台注册账号并创建小程序应用。 在小程序后台设置支付相关信息,包括支付证书、支付回调地址等。 在小程序前端页面中调用wx.requestPayment函数,调起微信支付界面。 在小程序后…

GB/T 35379-2017 木门分类和通用技术要求

木门是指主要采用实木、人造板或其他木质复合材料制成的门框和门扇,根据表面材料的不同分为实木门,实木复合门和木质复合门,按照功能的不同分为防火木门、防盗木门、防潮木门、隔声木门等。 GB/T 35379-2017 木门检测项目 测试项目 测试标准…

【数电笔记】07-基本和复合逻辑运算

目录 说明: 基本逻辑运算 1. 与运算 (and gate) 2. 或运算 (or gate) 3. 非运算 (not gate ) 复合逻辑运算 1. 与非运算(nand) 2. 或非运算(nor&…

提高你的 Python 编程技巧:10个实用技巧

在日常的 Python 编程工作中,掌握一些实用的技巧可以提高你的效率和代码质量。本文将介绍 10 个实用的 Python 技巧,帮助你更好地利用 Python 进行开发。 1. enumerate 在循环中,有时我们需要同时获取元素的索引和值。这时可以使用 enumera…

用 taichi 写个软渲染器

用 taichi 写个软渲染器 What 起点是:可以 setup 一个画布,drawPixel(x, y, color),然后渲染到 GUI 或者 .png目标是:加载 obj 模型文件和 .tga 贴图文件,并渲染出来使用 taichi 作为 SIMD 加速 backend复现一些 RTR…

leetcode:统计感冒序列的数目【数学题:组合数含逆元模版】

1. 题目截图 2.题目分析 需要把其分为多个段进行填充 长为k的段,从两端往中间填充的方案数有2 ** (k - 1)种 组合数就是选哪几个数填哪几个段即可 3.组合数含逆元模版 MOD 1_000_000_007 MX 100_000# 组合数模板 fac [0] * MX fac[0] 1 for i in range(1, MX…

伯俊软件CTO陈雨陆:R3全渠道业务中台的OceanBase落地实践

11 月 16 日,OceanBase 在京顺利举办 2023 年度发布会,正式宣布:将持续践行“一体化”产品战略,为关键业务负载打造一体化数据库。其中,“数字化转型升级实践专场”我们有幸邀请到伯俊软件 CTO 陈雨陆进行《OceanBase …

从Intel Cyclone10GX TransceiverPHY 高速收发器认识ATX PLL、FPLL、CMU PLL等PLL

文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 前言 在使用Intel Cyclone10GX TransceiverPHY的过程中发现这个IP还是比较复杂的,特别是时钟系统,提到了多种PLL:ATX PLL、FPLL、CMU PLL,这里进行一下扩展学…

LoadBalancer将服务暴露到外部实现负载均衡metallb-layer2模式配置介绍

目录 一.metallb简介 1.支持多种负载均衡协议 2.支持自定义 IP 地址范围 3.无需额外的硬件设备 4.易于安装和配置 5.可扩展性强 6.layer2模式下选举的leader节点压力大 二.layer2模式配置演示 1.开启ipvs并开启严格ARP模式 2.下载并应用metallb 3.创建一个 IPAddres…

用友U8 Cloud RegisterServlet SQL注入漏洞复现

0x01 产品简介 用友U8 Cloud是用友推出的新一代云ERP,主要聚焦成长型、创新型企业,提供企业级云ERP整体解决方案。 0x02 漏洞概述 用友U8 Cloud RegisterServlet接口处存在SQL注入漏洞,未授权的攻击者可通过此漏洞获取数据库权限,从而盗取用户数据,造成用户信息泄露。 …

2023年甘肃省职业院校技能大赛(中职教师组)网络安全竞赛样题(四)

2023年甘肃省职业院校技能大赛(中职教师组) 网络安全竞赛样题(四) (总分1000分) 目录 模块A 基础设施设置与安全加固 A-1任务一 登录安全加固(Windows) A-2任务二 本地安全策略…

搭建React项目,基于Vite+React+TS+ESLint+Prettier+Husky+Commitlint

基于ViteReactTSESLintPrettierHuskyCommitlint搭建React项目 node: 20.10.0 一、创建项目 安装包管理器pnpm npm i pnpm -g基于Vite创建项目 pnpm create vitelatest web-gis-react --template react-ts进入项目目录安装依赖 $ cd web-gis-react $ pnpm i启动项目 $ pnpm…

【开题报告】基于SpringBoot的文学鉴赏平台的设计与实现

1.选题背景 随着互联网的普及和文学教育的重视,人们对文学作品的阅读和交流需求逐渐增加。传统的纸质书籍已经不能完全满足人们多样化的阅读需求,因此基于互联网的文学鉴赏平台应运而生。这样的平台通过提供文学作品的展示、评论和交流功能,…

ARM64安全特性之SMAP

ARM64 SMAP(Supervisor Mode Access Prevention)是一种安全扩展,用于在ARM64架构中限制特权模式下的内存访问。它的目的是防止特权模式下的恶意软件或漏洞利用程序访问受限内存区域,从而提高系统的安全性。 SMAP的主要原理是通过…