<JavaEE> 单例模式的两种实现:“饿汉模式”和“懒汉模式”

目录

一、单例模式概述

二、“饿汉模式”实现单例模式

三、“懒汉模式”实现单例模式

3.1 单线程下的“懒汉模式”

3.2 多线程下的“懒汉模式”


一、单例模式概述

1)什么是单例模式?

单例模式是一种设计模式。

单例模式可以保证某个类在程序中只存在唯一实例,即不允许创建多份实例。

使用单例模式,上述要求就得到了检查和校验。

2)单例模式的实现形式

单例模式可以通过很多种方法实现,“饿汉模式”和“懒汉模式”是其中最基础的两种,本文只介绍这两种实现。

二、“饿汉模式”实现单例模式

通过代码演示“饿汉模式”实现的单例模式:

class Singleton{//新建一个唯一实例;private static Singleton instance = new Singleton();//方法返回唯一实例;public static Singleton getInstance() {return instance;}//将构造方法私有化;private Singleton() { }
}
1)上述代码做了什么?

创建了一个被 static 修饰的实例,这个实例成为了类属性。类对象只会有一个,这个类属性也只会有一个。

私有化构造方法,外部无法 new 新的实例,只能通过 get 方法获取唯一的那一个 instance。
2)为什么叫做“饿汉模式”?

上述代码中,实例是类属性。类属性在类加载的时候就创建了,创建时机早,十分“迫切”,因此称为“饿汉模式”。

代码证明“饿汉模式”返回的实例是唯一的:

public class Singleton_Demo0 {public static void main(String[] args) {//想直接new对象,就会报错;//Singleton instance = new Singleton();//两次调用getInstance()方法并分别赋值;Singleton instance1 = Singleton.getInstance();Singleton instance2 = Singleton.getInstance();//对比两个变量,发现是同一实例;if(instance1 == instance2){System.out.println("两个对象是同一个对象");}}
}//运行结果:
两个对象是同一个实例
3)“饿汉模式”的单例模式在多线程下是线程安全的吗?

上述代码中,get 方法返回的是已经创建好的实例,这个操作本质上只是一个“读操作”,多个线程读取同一个变量并不会造成线程不安全。

因此“饿汉模式”的单例模式在多线程下是线程安全的。

三、“懒汉模式”实现单例模式

3.1 单线程下的“懒汉模式”

通过代码演示懒汉模式现的单例模式:

class Singleton{//声明一个变量作为类属性;private static Singleton instance = null;//判断变量是否为null,是则创建实例后返回,否则返回;public static Singleton getInstance() {if(instance == null){instance = new Singleton();}return instance;}//将构造方法私有化;private Singleton() { }
}
1)上述代码做了什么?

声明了一个类属性。类对象只会有一个,这个类属性也只会有一个。

私有化构造方法,外部无法 new 新的实例,只能通过 get 方法获取唯一的那一个 instance。
get 方法中根据变量是否为 null 判断是否应该创建实例。
2)为什么叫做“懒汉模式”?

上述代码中,实例是在程序员第一次调用 get 方法后才创建的,创建时机较晚,或者根本不用创建,因此称为“懒汉模式”。

3.2 多线程下的“懒汉模式”

1)单线程下的“懒汉模式”在多线程下是线程安全的吗?

答案是否定的,单线程下的“懒汉模式”在多线程下是线程不安全的,我们可以从以下两个方面分析:

“原子性”:

上述代码中判断变量是否为空的代码 —— if(instance == null),和实例化代码 —— 

instance = new Singleton(),并非是“原子”的。在多线程环境下,这就可能导致线程不安全。

可以使用 synchronized 关键字,将这两句代码加锁,解决这个问题。

内存可见性和指令重排序:

因为 instance 是一个被 static 修饰的共享数据,而且编译器内部可能对实例化的代码 —— new Singleton(),进行了编译器优化。

这就无法保证内存的可见性和指令的顺序执行,因此在多线程环境下可能导致线程不安全。

可以使用 volatile 关键字,对共享数据 instance 进行修饰,解决这个问题。

使用以上两个关键字的原因和方式,详细请参考以下博客:

阅读指针 -> 《synchronized 关键字 和 volatile 关键字》<JavaEE> synchronized关键字和锁机制 -- 锁的特点、锁的使用、锁竞争和死锁、死锁的解决方法-CSDN博客文章浏览阅读70次。介绍了 synchronized 关键字 和 锁机制,其中重点介绍了锁的特点、使用方法和死锁的相关内容。https://blog.csdn.net/zzy734437202/article/details/134742168<JavaEE> volatile关键字 -- 保证内存可见性、禁止指令重排序-CSDN博客文章浏览阅读59次。简单介绍什么是内存可见性和指令重排序。volatile关键字可以将这两种编译器优化强制关闭。https://blog.csdn.net/zzy734437202/article/details/134757070

2)“懒汉模式”在多线程下应该怎么编写?

根据上述分析,根据单线程模式下的“懒汉模式”进行改进。

方法如下:

增加 volatile 关键字对共享数据进行修饰。

为判断是否为 null 和 实例化的代码加锁,使这两句代码称为“原子”。

增加 volatile 关键字对共享数据进行修饰:

private volatile static Singleton instance = null;

为判断是否为 null 和 实例化的代码加锁,使这两句代码称为“原子”:

    public static Singleton getInstance() {synchronized (locker){if(instance == null){instance = new Singleton();}}return instance;}
3)“双重校验锁”

我们再仔细分析一下上述的 get 方法。

假设程序需要多次调用这个 get 方法,那么每一次进入都会进行加锁,加锁是会增加系统开销的。

那么是否真的有必要每次都加锁呢?

当 get 方法被第一次调用,实例就会被创建,那么后续再调用这个 get 方法时,返回实例就好了,加锁部分的代码块,完全可以不用执行。

在加锁的代码块之外,再增加一个if(instance == null)进行判断,那么实例在被创建之后,也就不会再进入加锁的代码块中了。

我们成功利用“双重校验锁”,优化了程序。

代码演示“双重校验锁”优化后的 get 方法:

    public static Singleton getInstance() {//这个if用于判断是否需要加锁;if(instance == null){synchronized (locker){//这个if用于判断是否需要新建实例;if(instance == null){instance = new Singleton();}}}return instance;}

经过以上的完善和优化,我们终于可以写出在多线程下保证线程安全的“懒汉模式”单例模式了:

class Singleton{//声明一个变量作为类属性;private volatile static Singleton instance = null;private static final Object locker = new Object();//判断变量是否为null,是则创建实例后返回,否则返回;public static Singleton getInstance() {//这个if用于判断是否需要加锁;if(instance == null){synchronized (locker){//这个if用于判断是否需要新建实例;if(instance == null){instance = new Singleton();}}}return instance;}//将构造方法私有化;private Singleton() { }
}

阅读指针 -> 《阻塞队列》

链接生成中.........

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/197120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

免费百度SEO优化工具,百度SEO优化排名工具

百度SEO关键词工具 让我们聚焦在百度SEO关键词工具上。对于任何想要在百度搜索引擎中脱颖而出的网站管理员而言,深入了解用户搜索习惯和关键词的选择是至关重要的。 百度SEO关键词工具不仅提供了免费的服务,而且功能强大。通过输入相关领域的关键词&…

ESP32-Web-Server编程-通过 Web 下载文本

ESP32-Web-Server编程-通过 Web 下载文本 概述 当你希望通过网页导出设备的数据时,可以在 ESP32 上部署一个简单的文件 Web 服务器。 需求及功能解析 本节演示如何在 ESP32 上部署一个最简单的 Web 服务器,来接收浏览器或者 wget 指令请求文件数据。…

VMware安装Ubuntu系统(Server端,Desktop端步骤一样)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

MFC发送ZPL指令控制斑马打印机

1、参考1:用Python操控斑马打印机的技术总结 - 重拾初心的青年人 - 博客园 (cnblogs.com) 参考2:VC斑马打印机_vc zpl-CSDN博客 参考3:斑马打印机ZPL语言编程实战_梅长酥的博客-CSDN博客 参考4:关于斑马打印机开发的几种方式_斑马…

[ROS2] --- ROS diff ROS2

1 ROS存在的问题 一旦Ros Master主节点挂掉后,就会造成整个系统通信的异常,通信基于TCP实现,实时性差、系统开销大对Python3支持不友好,需要重新编译消息机制不兼容没有加密机制、安全性不高 2 ROS and ROS2架构对比 ROS和ROS2架构如下图所…

我个人最喜欢的远程连接Linux服务器的方案

2023年12月4日,周一晚上 在Windows Terminal用Windows自带的ssh.exe来远程连接Linux服务器是我最喜欢的方案。 因为真的非常简洁美观,而且想改字体、背景什么的也非常方便, 最重要的是,我个人非常喜欢纯文本的界面,觉…

C# - Opencv应用(3) 之矩阵Mat使用[图像截取粘贴、ROI操作、位运算、数学计算]

C# - Opencv应用(3) 之矩阵Mat使用[图像截取粘贴、ROI操作、位运算、数学计算] 图像读取,大小、截取、位运算图像ROI操作:粘贴赋值、滤波图像数学计算部分结果如下: 1.图像读取,大小、截取、位运算 //图…

【无标题】广东便携式逆变器的澳洲安全 AS/NZS 4763

便携式逆变器的澳洲安全 AS/NZS 4763 便携式逆变器申请澳大利亚和新西兰SAA认证的时候,需要按照澳洲*用标准AS/NZS 4763: 2011进行测试。立讯检测安规实验室有澳洲AS/NZS 4763: 2011资质授权,为国内多家便携式逆变器客户成功申请澳洲SAA证书 便携式户外…

侯捷C++八部曲(一,面向对象)

头文件和类的声明 inline inline修饰函数,是给编译器的一个建议,到底是否为inline由编译器来决定,inline修饰的函数在使用时是做简单的替换,这样就避免了一些函数栈空间的使用,从能提升效率。从另一种角度看&#xff…

玩转大数据5:构建可扩展的大数据架构

1. 引言 随着数字化时代的到来,大数据已经成为企业、组织和个人关注的焦点。大数据架构作为大数据应用的核心组成部分,对于企业的数字化转型和信息化建设至关重要。我们将探讨大数据架构的基本要素和原则,以及Java在大数据架构中的角色&…

sagment-anything官方代码使用详解

文章目录 一. sagment-anything官方例程说明1. 结果显示函数说明2. SamAutomaticMaskGenerator对象(1) SamAutomaticMaskGenerator初始化参数 3. SamPredictor对象(1) 初始化参数(2) set_image()(3) predict() 二. SamPredictor流程说明1. 导入所需要的库2. 读取图像3. 加载模型…

【NI-RIO入门】Real Time(实时系统解释)

1.什么是实时系统? 实时系统可以非常精确可靠的执行需要特定时许要求的系统,对于许多工程项目来说,通用操作系统,例如WINDOWS等标准PC上运行测量和控制程序是无法精确控制计时的,这些系统很容易受用户的其他程序、图像…

数据挖掘与低代码开发应用:加速业务创新的黄金组合

数据挖掘与低代码开发是当今创新领域的两大热点技术。数据挖掘技术可以从大量数据中发现隐藏的模式和知识,为决策提供有力支持;而低代码开发则使得应用程序的开发变得更加快捷和高效。本文将介绍数据挖掘和低代码开发的概念及其应用,并阐述它…

GEE:使用拉普拉斯(Laplacian)算子对遥感图像进行卷积操作

作者:CSDN @ _养乐多_ 本文记录了使用拉普拉斯(Laplacian)算子对遥感图像进行卷积操作的代码。并以试验区NDVI图像为例。 研究区真彩色影像、NDVI图像以及Sobel卷积结果如下所示, 文章目录 一、拉普拉斯算子二、完整代码三、代码链接一、拉普拉斯算子 详细介绍参考《遥感…

决策树 算法原理

决策树 算法原理 决策树的原理 决策树: 从训练数据中学习得出一个树状结构的模型 决策树属于判别模型 决策树是一种树状结构,通过做出一系列决策 (选择) 来对数据进行划分,这类似于针对一系列问题进行选择。 决策树的决策过程就是从根节点开始&#…

不再只是android,华为自爆Harmony将对标iOS

今年10月,华为官方宣布,鸿蒙OS 4升级设备数量已突破1亿,成为史上升级最快的鸿蒙OS版本。 日前,据数码博主“定焦数码”消息,大厂技术员工做适配,通过线下沟通时,华为反复提到一个问题&#xff…

基于stm32的LCD1602与无线蓝牙温湿度显示

这一篇博客是为了实现温湿度的显示,温湿度传感器将数据穿给单片机,单片机又把数据送给LCD1602和蓝牙,让温度和湿度可以再LCD1602显示屏和手机上显示,它的执行逻辑和C51那里基本一样,就是要修改程序,在程序上…

Windows server——部署DHCP服务(2)

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​​ 目录 前言 一.配置DHCP服务 1.DHCP安装的要求 安装DHCP服务器需要满足如下要求&#…

python pyaudio显示音频波形图

python pyaudio显示音频波形图 代码如下: import numpy as np import matplotlib.pylab as plb import wave# 读取 wav wf wave.open("./output.wav", "rb")# 获取音频相关参数:声道数、量化位数、采样频率、采样帧数 nchannels,…

2023全网最新-免杀方法大集结

目录 00. 概述 01. 简介 02. 静态免杀 1. 怎么找特征码 工具查找 手工查找 其他 2. 怎么免杀? 手工修改 非源码 工具免杀(盲免杀) 03. 行为动态免杀 行为拦截原理 如何进行行为免杀呢? 总结 注意/技巧 00. 概述 …