YOLOv8改进有效涨点 | 2023 | SPD-Conv空间深度转换卷积(高效空间编码技术)

一、本文介绍

本文给大家带来的改进内容是SPD-Conv(空间深度转换卷积)技术。SPD-Conv是一种创新的空间编码技术,它通过更有效地处理图像数据来改善深度学习模型的表现。SPD-Conv的基本概念:它是一种将图像空间信息转换为深度信息的技术,从而使得卷积神经网络(CNN)能更加有效地学习图像特征。这种方法通过减少信息损失和提高特征提取的准确性,优化了模型对小物体和低分辨率图像的处理能力。我在YOLOv8中利用SPD-Conv被用于替换传统的步长卷积和池化层,在不牺牲精确度的情况下减少计算复杂度(精度甚至略有提升)。本文后面会有SPD-Conv的代码和使用方法,手把手教你添加到自己的网络结构中。(值得一提的是该卷积模块可以做到轻量化模型的作用GFLOPs由8.9降低到8.2,参数量也有一定降低)

推荐指数:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

这次试验我用的数据集大概有七八百张照片训练了100个epochs,可以出模型没有完全拟合大概涨点了0.3左右,如果完全拟合效果肯定会更好。所以推荐大家使用(值得一提的是该卷积模块可以做到轻量化模型的作用GFLOPs由8.9降低到8.2,参数量也有一定降低)

 

目录

一、本文介绍

二、SPD-Conv构建块原理

2.1 SPD-Conv的基本原理

2.1.1替换步长卷积和池化层

2.1.2 空间到深度(SPD)层

2.1.3 非步长卷积层

2.2 检测效果

三、SPD-Conv完整代码

 四、手把手教你添加SPD-Conv

4.1 SPD-Conv的添加教程

4.2 SPD-Conv的yaml文件和训练截图(仔细看这个否则会报错)

4.2.1 SPD-Conv的yaml文件

4.2.2 SPD-Conv的训练过程截图 

五、SPD-Conv可添加的位置

5.1 推荐SPD-Conv可添加的位置 

5.2 图示SPD-Conv可添加的位置 

六、本文总结


二、SPD-Conv构建块原理

论文地址:论文官方地址

代码地址:


2.1 SPD-Conv的基本原理

SPD-Conv(空间到深度卷积)的基本原理是用于改进传统卷积神经网络(CNN)中对小物体和低分辨率图像处理的性能。它主要通过以下几个关键步骤实现:

1. 替换步长卷积和池化层:SPD-Conv设计用来替代传统CNN架构中的步长卷积层和池化层。步长卷积和池化层在处理低分辨率图像或小物体时会导致细粒度信息的丢失。

2. 空间到深度(SPD)层:SPD层的作用是降采样特征图的通道维度,同时保留信息。这种方式可以避免传统方法中的信息丢失。

3. 非步长卷积层:在SPD层之后,SPD-Conv使用一个非步长(即步长为1)的卷积层。这有助于在降低通道数量的同时利用可学习的参数对特征进行处理。

以下是我对这个图的理解:

1. 特征图 (a):传统的特征图,具有通道数 C_{1},高度和宽度。
2. 空间到深度变换 (b):通过空间到深度操作,将像素的空间块重新排列到深度/通道维度,增加通道数到 4C_{1},同时将空间维度缩小2倍。
3. 通道合并 (c):不同的通道组在通道维度上进行合并。
4. 加法操作 (d):合并的特征图可能会与其他处理过的特征图(图中未详细展示)进行加法操作。
5. 非步长卷积 (e):对结果特征图应用步长为1的卷积,减少通道维度至C_{2},同时保持空间分辨率,其仍是原始大小的1/2。

2.1.1替换步长卷积和池化层

论文中提出的SPD-Conv构建块是为了替代传统CNN中的步长卷积和池化层。步长卷积和池化层在处理低分辨率图像和小物体时会导致信息的丢失。SPD-Conv使用空间到深度(SPD)层,该层将特征图的空间维度转换成深度维度,通过增加通道数来保留更多信息。随后是非步长卷积层,它保持了空间维度,减少了通道数。这种替代方法避免了信息的丢失,并允许网络捕获更精细的特征,从而提高了在复杂任务上的性能。

上图是SPD-Conv论文中的一个图表,展示了如何在YOLOv5的结构中实施SPD-Conv(在YOLOv8中同样适用)。图中标红的部分代表了SPD-Conv替换传统卷积操作的地方。YOLOv5的架构被分为三个主要部分:

1. 主干网络(Backbone):这是特征提取的核心部分,每个SPD和Conv层的组合都替换了原始YOLOv5中的步长卷积层。
2. 颈部(Neck):这部分用于进一步处理特征图,以获得不同尺度的特征,从而提高检测不同大小物体的能力。它也包含SPD和Conv层的组合,以优化特征提取。
3. 头部(Head):这是决策部分,用于物体检测任务,包括定位和分类。头部保持了YOLO原始架构的设计。

直连线表示直接的前向连接,虚线代表跳跃连接,用于整合不同层次的特征。


2.1.2 空间到深度(SPD)层

空间到深度(SPD)层是SPD-Conv中的一个关键组件,其作用是将输入特征图的空间块(像素块)重新排列进入深度(通道)维度,以此来增加通道数,同时减少空间分辨率,但不丢失信息。通过这种方式,这一转换允许CNN捕捉和保留在处理小物体和低分辨率图像时经常丢失的精细信息。SPD层后面紧跟的是非步长卷积层,它进一步处理重新排列后的特征图,确保有效特征的提取和使用​​。通过这种方法,SPD-Conv能够在特征提取阶段保留更丰富的信息,从而提高模型对于小物体和低分辨率图像的识别性能。


2.1.3 非步长卷积层

在SPD-Conv的背景下,非步长卷积层采用的是步长为1的卷积操作,意味着在卷积过程中,滤波器(或称为卷积核)会在输入特征图上逐像素移动,没有跳过任何像素。这样可以确保在特征图的每个位置都能应用卷积核,最大程度地保留信息,并生成丰富的特征表示。非步长卷积层是紧随空间到深度(SPD)层的一个重要组成部分。在SPD层将输入特征图的空间信息重新映射到深度(通道)维度后,非步长卷积层(即步长为1的卷积层)被用来处理这些重新排列的特征图。由于步长为1,这个卷积层不会导致任何进一步的空间分辨率降低,这允许网络在不损失细节的情况下减少特征图的通道数。这种方法有助于改善特征的表征,特别是在处理小物体或低分辨率图像时,这些场景在传统CNN结构中往往会丢失重要信息。


2.2 检测效果

上图比较了标准YOLOv5m模型和集成了SPD-Conv的改进版本YOLOv5-SPD-m的性能。紫色框表示标准YOLOv5m的预测,绿色框显示了YOLOv5-SPD-m的预测。蓝色框代表地面真相(ground truth)。红色箭头突出了两个模型预测之间的差异。

从图像中我们可以看出,YOLOv5-SPD-m(绿色框)的预测与地面真相更为接近,与YOLOv5m(紫色框)的预测相比,这表明将SPD-Conv整合进YOLOv5能增强模型准确检测物体的能力,这对于需要精确定位和识别的应用来说至关重要,例如自动驾驶或监控。

三、SPD-Conv完整代码

我们将该卷积直接放在'ultralytics/nn/modules/conv.py'文件下,然后其余使用方法看章节四(该卷积课可以直接替换主干网络上的卷积)。

class SPDConv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()c1 = c1 * 4self.conv = nn.Conv2d(c1 , c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)return self.act(self.conv(x))

 四、手把手教你添加SPD-Conv

4.1 SPD-Conv的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头


4.2 SPD-Conv的yaml文件和训练截图(仔细看这个否则会报错)

4.2.1 SPD-Conv的yaml文件

下面的配置文件为我修改的SPD-Conv的位置(这里需要注意的是你可以和初始的yaml对比一下修改了SPD-Conv的参数被修改了,你如果不修改该卷积那么则不需要修改另外两个参数)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, SPDConv, [128]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, SPDConv, [256]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SPDConv, [512]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SPDConv, [1024]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, SPDConv, [256]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, SPDConv, [512]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 SPD-Conv的训练过程截图 

下面是添加了SPD-Conv的训练截图。

(最近有人说我改的代码是没有发全的,我不知道这群人是怎么说出这种话的,希望大家如果用我的代码成功的可以在评论区支持一下,我也好发更多的改进毕竟免费给大家看。同时有问题皆可在评论区留言我看到都会回复) 

大家可以看下面的运行结果和添加的未知所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​​


五、SPD-Conv可添加的位置

5.1 推荐SPD-Conv可添加的位置 

SPD-Conv是一种即插即用的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入SPD-Conv

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_SPD-Conv可以帮助模型更有效地融合不同层次的特征。

  3. 检测头中的卷积:在最终的输出层前加入SPD-Conv可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。


5.2 图示SPD-Conv可添加的位置 

2949694815404620bdfb5875286c8e73.png​​​


六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~)如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

3d51a0611af1442f833362eaf18fbae2.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/196488.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot的常用注解

声明解释这个对象(类或者其他)组件相关 名称作用Controller用于修饰MVC中controller层的组件SpringBoot中的组件扫描功能会识别到该注解,并为修饰的类实例化对象,通常与RequestMapping联用,当SpringMVC获取到请求时会…

国产API调试插件:Apipost-Helper

前言 Idea 是一款功能强大的集成开发环境(IDE),它可以帮助开发人员更加高效地编写、调试和部署软件应用程序,Idea 还具有许多插件和扩展,可以根据开发人员的需要进行定制和扩展,从而提高开发效率,今天我们就来介绍一款…

笔记-模拟角频率和数字角频率的关系理解

先建议阅读前人此文(点击这里),有助于理解。 模拟频率:f 模拟角频率:Ω 数字角频率:ω 其中:在模拟信号中Ω 2πf 正弦波表示:sin(2πft) sin(Ωt) 数字信号就是离散的&#xff…

深度学习(五):pytorch迁移学习之resnet50

1.迁移学习 迁移学习是一种机器学习方法,它通过将已经在一个任务上学习到的知识应用到另一个相关任务上,来改善模型的性能。迁移学习可以解决数据不足或标注困难的问题,同时可以加快模型的训练速度。 迁移学习的核心思想是将源领域的知识迁…

出现数据库出现没有时间格式的错误,实体类Date类型不对导致时间报错

目录 报错现场解决办法java与mysql中的日期类型及二者的对应关系和使用场景 报错现场 数据库最早时间为2023年1月1日,前端查询后却出现2022年12月31日的数据 数据库时间类型为date swagger接口测试 解决办法 讲until的Date改成sql类的Date,就可以了…

[ 蓝桥杯Web真题 ]-视频弹幕

目录 介绍 准备 目标 效果 规定 思路 解答参考 扩展功能 介绍 弹幕指直接显现在视频上的评论,可以以滚动、停留甚至更多动作特效方式出现在视频上,是观看视频的人发送的简短评论。通过发送弹幕可以给观众一种“实时互动”的错觉,弹幕…

基于STM32的智慧农业项目(物联网专业毕设)附送源码和文档材料+学习路线

文章目录 概要整体架构流程硬件选型软件总体框架技术细节实现效果小结 概要 传统农业存在着产量受到环境因素影响较大的问题,现有的农业监测系统数据太过简单、太过理想化。而随着现代科学的持续发展,一个精准化、自动化的现代智能农产品管理系统将在农业生产中起着…

个人Windows电脑通过Cloudreve+Cpolar搭建PHP云盘系统公网可访问

文章目录 1、前言2、本地网站搭建2.1 环境使用2.2 支持组件选择2.3 网页安装2.4 测试和使用2.5 问题解决 3、本地网页发布3.1 cpolar云端设置3.2 cpolar本地设置 4、公网访问测试5、结语 1、前言 自云存储概念兴起已经有段时间了,各互联网大厂也纷纷加入战局&#…

⭐ Unity + ARKIT 介绍 以及 平面检测的实现

在AR插件中,ARKIT是比较特殊的一个,首先他在很多追踪上的效果要比其他的AR插件要好,但是只能在IOS系统设备上运行。 1.首先ARKIT在最新版Unity已经集成在AR Foundation中,那我们就需要ARSession 和ARSessionOrigin这两个重要组件…

netcore swagger 错误 Failed to load API definition

后端接口报错如下: 前端nswag报错如下: 根据网上查询到的资料说明,说一般swagger这种错误都是控制器里有接口代码异常造成的,通常是接口没有加属性Attribute, 比如[HttpPost("Delete")]、[HttpGet("Del…

chown和chmod

chown和chmod都是在Linux和Unix系统中用于设置文件和文件夹权限的命令,但它们的功能和用途有所不同。 功能:chown主要用于修改文件或文件夹的所有者和所属组,而chmod则主要用于修改文件或文件夹的读写执行权限。用途:如果想要授权…

Vue3 组合式实现 带连接线的Tree型 架构图(一级树形图)

创建组件名称 TreeNodeView.vue <template><div class"tree-node"><div class"node">{{ rootNodeName }}</div><div class"children" :style"childrenLineStyle"><div class"child-node"…

12月4日作业

完成沙发床的多继承 #include <iostream>using namespace std;class Sofa { private:string sit;int *price; public:Sofa() {cout << "Sofa::无参构造函数" << endl;}Sofa(string sit,int price):sit(sit),price((new int(price))){cout <<…

AutoHotKey-study

目录 使用编辑器脚本注意函数解释信息调试方法键盘获取方法脚本练习 最近发现常用键盘的上下左右箭头去操作输入输出问题感觉很不是滋味&#xff0c;不像Linux那样&#xff0c;有vim的使用&#xff0c;就想着有没有什么方法更快捷&#xff0c;更方便的去使用电脑键盘&#xff0…

分享80个菜单导航JS特效,总有一款适合您

分享80个菜单导航JS特效&#xff0c;总有一款适合您 80个菜单导航JS特效下载链接&#xff1a;https://pan.baidu.com/s/1NgNc759Kg1of_8vR7kaj6A?pwd6666 提取码&#xff1a;6666 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;…

pip的基本命令和使用

pip 简介 pip是Python官方的包管理器&#xff0c;可以方便地安装、升级和卸载Python包。 pip 常用命令 显示版本和路径 pip --version获取帮助 pip --help升级pip和升级包 pip install --upgrade pip # Linux/macOS pip install -U pip # windowspip install…

【Cesium】模型平面裁切

const scene viewer.scene;let tileset; let targetY 400.0; let planeEntities []; let selectedPlane; // 选择的切面 let clippingPlanes; // 切面属性// 当鼠标点击切面时&#xff0c;修改相关属性 const downHandler new Cesium.ScreenSpaceEventHandler(viewer.sce…

表达式二叉树的中序遍历:2017年408算法题

算法思想 表达式二叉树的中序遍历即中缀表达式除了根节点和叶结点&#xff0c;遍历到其他结点时在遍历其左子树前加上左括号&#xff0c;在遍历完右子树后加上右括号 算法实现 //中序遍历&#xff0c;deep从1开始&#xff0c;即根节点的深度为1 void midOrder(BTree T,int …

作业12.4

1.沙发床的多继承 #include <iostream>using namespace std; class Sofa { private:string sit; public://无参构造Sofa(){}//有参构造Sofa(string sit):sit(sit){}//拷贝构造Sofa(const Sofa &other):sit(other.sit){}//拷贝赋值Sofa &operator (const Sofa &…

【数据分享】2015-2023年我国区县逐月二手房房价数据(Excel/Shp格式)

房价是一个城市发展程度的重要体现&#xff0c;一个城市的房价越高通常代表这个城市越发达&#xff0c;对于人口的吸引力越大&#xff01;因此&#xff0c;房价数据是我们在各项城市研究中都非常常用的数据&#xff01;之前我们分享过2015-2023年我国地级市逐月房价数据&#x…