【数据结构(六)】排序算法介绍和算法的复杂度计算(1)

文章目录

  • 1. 排序算法的介绍
    • 1.1. 排序的分类
  • 2. 算法的时间复杂度
    • 2.1. 度量一个程序(算法)执行时间的两种方法
    • 2.2. 时间频度
      • 2.2.1. 忽略常数项
      • 2.2.2. 忽略低次项
      • 2.2.2. 忽略系数
    • 2.3. 时间复杂度
    • 2.4. 常见的时间复杂度
    • 2.5. 平均时间复杂度和最坏时间复杂度
  • 3. 算法的空间复杂度


1. 排序算法的介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。

1.1. 排序的分类

  1. 内部排序:
    指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助**外部存储(文件等)**进行排序。

常见的排序算法分类(见下图):

在这里插入图片描述

2. 算法的时间复杂度

2.1. 度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法
    这种方法可行, 但是有两个问题:
    一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
    二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

  2. 事前估算的方法
    通过分析某个算法的时间复杂度来判断哪个算法更优。

2.2. 时间频度

基本介绍:

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T ( n ) T(n) T(n)

举例说明-基本案例

比如计算 1-100 所有数字之和, 可设计两种算法:
在这里插入图片描述

2.2.1. 忽略常数项

在这里插入图片描述

结论:
2 n + 20 2n+20 2n+20 2 n 2n 2n 随着 n n n 变大,执行曲线无限接近, 20 20 20 可以忽略
3 n + 10 3n+10 3n+10 3 n 3n 3n 随着 n n n 变大,执行曲线无限接近, 10 10 10 可以忽略

2.2.2. 忽略低次项

在这里插入图片描述

结论:
2 n 2 + 3 n + 10 2n^2+3n+10 2n2+3n+10 2 n 2 2n^2 2n2 ,随着 n n n 变大, 执行曲线无限接近, 可以忽略 3 n + 10 3n+10 3n+10
n 2 + 5 n + 20 n^2+5n+20 n2+5n+20 n 2 n^2 n2 ,随着 n n n 变大,执行曲线无限接近, 可以忽略 5 n + 20 5n+20 5n+20

2.2.2. 忽略系数

在这里插入图片描述

结论:
① 随着 n n n 值变大, 5 n 2 + 7 n 5n^2+7n 5n2+7n 3 n 2 + 2 n 3n^2 + 2n 3n2+2n ,执行曲线重合, 说明 这种情况下, 5 5 5 3 3 3 可以忽略。
② 而 n 3 + 5 n n^3+5n n3+5n 6 n 3 + 4 n 6n^3+4n 6n3+4n ,执行曲线分离,说明多少次方是关键

2.3. 时间复杂度

    一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n n n 的某个函数,用 T ( n ) T(n) T(n)表示,若有某个辅助函数 f ( n ) f(n) f(n),使得当 n n n 趋近于无穷大时, T ( n ) f ( n ) \frac {T(n)}{f(n)} f(n)T(n) 的极限值为不等于零的常数,则称 f ( n ) f(n) f(n) T ( n ) T(n) T(n)的同数量级函数。记作 T ( n ) = O ( f ( n ) ) \pmb{T(n)=O( f(n) )} T(n)=(f(n)),称 O ( f ( n ) ) O( f(n) ) (f(n)) 为算法的渐进时间复杂度,简称时间复杂度
    
     T ( n ) T(n) T(n) 不同,但时间复杂度可能相同。 如: T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 T ( n ) = 3 n 2 + 2 n + 2 T(n)=3n^2+2n+2 T(n)=3n2+2n+2 它们的 T ( n ) T(n) T(n) 不同,但时间复杂度相同,都为 O ( n 2 ) \pmb{O(n²)} O(n2)

    

计算时间复杂度的方法:
(以 T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 为例)
①用常数 1 1 1 代替运行时间中的所有加法常数。

T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 --> T ( n ) = n 2 + 7 n + 1 T(n)=n^2+7n+1 T(n)=n2+7n+1

②修改后的运行次数函数中,只保留最高阶项。

T ( n ) = n 2 + 7 n + 1 T(n)=n^2+7n+1 T(n)=n2+7n+1 --> T ( n ) = n 2 T(n) = n^2 T(n)=n2

③去除最高阶项的系数。

T ( n ) = n 2 T(n) = n^2 T(n)=n2 --> T ( n ) = n 2 T(n) = n^2 T(n)=n2 --> O ( n 2 ) O(n^2) O(n2)

2.4. 常见的时间复杂度

  1. 常数阶 O ( 1 ) O(1) O(1)
  2. 对数阶 O ( l o g 2 n ) O(log_2n) O(log2n)(其中, l o g log log以2为底,也可以是以3、4、5……为底)
  3. 线性阶 O ( n ) O(n) O(n)
  4. 线性对数阶 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)(其中, l o g log log以2为底,也可以是以3、4、5……为底)
  5. 平方阶 O ( n 2 ) O(n^2) O(n2)
  6. 立方阶 O ( n 3 ) O(n^3) O(n3)
  7. k 次方阶 O ( n k ) O(n^k) O(nk)
  8. 指数阶 O ( 2 n ) O(2^n) O(2n)

常见的时间复杂度对应的图:

在这里插入图片描述

说明:

  1. 常见的算法时间复杂度由小到大依次为: O ( 1 ) Ο(1) O(1) O ( l o g 2 n ) Ο(log_2n) O(log2n) O ( n ) Ο(n) O(n) O ( n l o g 2 n Ο(nlog_2n O(nlog2n)< O ( n 2 ) Ο(n^2) O(n2) O ( n 3 ) Ο(n^3) O(n3) O ( n k ) Ο(n^k) O(nk) O ( 2 n ) Ο(2^n) O(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法。

① 常数阶 O ( 1 ) O(1) O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是 O ( 1 ) O(1) O(1)

int i = 1;
int j =2;
++i;
j++;
int m = i + j;

    上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。


② 对数阶 O ( l o g 2 n ) O(log_2n) O(log2n)

int i =1;
while(i < n){i= i * 2;
}

说明:
    在while循环里面,每次都将 i i i 乘以 2 2 2,乘完之后, i i i 距离 n n n 就越来越近了。假设循环 x x x 次之后, i i i 就大于 n n n 了,此时这个循环就退出了,也就是说 2 2 2 x x x 次方等于 n n n,那么 x = l o g 2 n x=log_2n x=log2n也就是说当循环 l o g 2 n log_2n log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为: O ( l o g 2 n ) O(log_2n) O(log2n)
     O ( l o g 2 n ) O(log_2n) O(log2n) 中的2是根据代码变化的,若 i = i ∗ 3 i = i * 3 i=i3 ,则是 O ( l o g 3 n ) O(log_3n) O(log3n)

    如果 N = a x ( a > 0 , a ≠ 1 ) N= a^x(a > 0,a ≠1) N=ax(a>0,a=1),即 a a a x x x 次方等于 N ( a > 0 , a ≠ 1 ) N(a>0,a≠1) N(a>0,a=1),那么数 x x x 叫做以 a a a 为底 N N N 的对数 ( l o g a r i t h m ) (logarithm) (logarithm),记作 x = l o g a N x = log_aN x=logaN 。其中, a a a 叫做对数的底数 N N N 叫做真数 x x x 叫做 “以 a a a 为底 N N N对数” 。


③ 线性阶 O ( n ) O(n) O(n)

for(i = 1; i <= n; ++i){j = i;j++;
}

说明:
    这段代码,for循环 里面的代码会执行 n n n 遍,因此它消耗的时间是随着 n n n 的变化而变化的,因此这类代码都可以用 O ( n ) O(n) O(n) 来表示它的时间复杂度。 T ( n ) = n + 1 T(n)=n+1 T(n)=n+1 --> O ( n ) O(n) O(n)


④ 线性对数阶 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)

for(m = 1; m < n; m++){i = 1;while(i < n){i = i * 2;}
}

说明:
    线性对数阶 O ( n l o g 2 N ) O(nlog_2N) O(nlog2N) 其实非常容易理解,将时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n) 的代码循环 N N N 遍的话,那么它的时间复杂度就是 n ∗ O ( l o g 2 N ) n * O(log_2N) nO(log2N),也就是了 O ( n l o g 2 N ) O(nlog_2N) O(nlog2N)


⑤ 平方阶 O ( n 2 ) O(n^2) O(n2)

for(x = 1; x <= n; x++){for(i = 1; i <= n; i++){j = i;j++;}
}

说明:
    平方阶 O ( n 2 ) O(n²) O(n2) 就更容易理解了,如果把 O ( n ) O(n) O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O ( n 2 ) O(n²) O(n2),这段代码其实就是嵌套了2层 n n n 循环,它的时间复杂度就是 O ( n ∗ n ) O(n*n) O(nn),即 O ( n 2 ) O(n²) O(n2) 如果将其中一层循环的 n n n 改成 m m m ,那它的时间复杂度就变成了 O ( m ∗ n ) O(m*n) O(mn)


⑥ 立方阶 O ( n 3 ) O(n^3) O(n3) ⑦ k 次方阶 O ( n k ) O(n^k) O(nk)

说明: 参考上面的 O ( n 2 ) O(n²) O(n2) 去理解就好了, O ( n 3 ) O(n³) O(n3) 相当于3层 n n n 循环,其它的类似。

2.5. 平均时间复杂度和最坏时间复杂度

    平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
    最坏情况下的时间复杂度称最坏时间复杂度一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。

平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如下图所示)。

排序法平均时间最差情况稳定度额外空间备注
冒泡 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
交换 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
选择 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
插入 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定 O ( 1 ) O(1) O(1)大部分已排序时较好
基数 O ( l o g R B ) O(log_RB) O(logRB) O ( l o g R B ) O(log_RB) O(logRB)稳定 O ( n ) O(n) O(n)B是真数(0~9)
R是基数(个十百)
Shell O ( n l o g n ) O(nlogn) O(nlogn) O ( n s ) , 1 < s < 2 O(n^s) ,1<s<2 O(ns),1<s<2不稳定 O ( 1 ) O(1) O(1)s是所选分组
快速 O ( n l o g n ) O(nlogn) O(nlogn) O ( n 2 ) O(n^2) O(n2)不稳定 O ( n l o g n ) O(nlogn) O(nlogn) n n n大的情况较好
归并 O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn)稳定 O ( 1 ) O(1) O(1) n n n大的情况较好
O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn)不稳定 O ( 1 ) O(1) O(1) n n n大的情况较好

3. 算法的空间复杂度

    类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模 n n n 的函数。
    空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n n n 有关,它随着 n n n 的增大而增大,当 n n n 较大时,将占用较多的存储单元,例如快速排序、归并排序、 基数排序就属于这种情况。

    在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/196017.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

测试用例:微信发红包测试用例(最新版)

测试核心&#xff08;重点&#xff09;&#xff1a; 功能界面安全性易用性兼容性性能 一、功能测试 1、一对一红包&#xff1a; 一对一发出去的红包自己不能领取。 一对一红包金额&#xff1a;最多200。 2、群发红包&#xff1a; &#xff08;1&#xff09;拼手气红包&#xff…

(03)vite 处理 css

文章目录 系列全集vite 处理css流程vite如何解决协同开发&#xff0c;样式重复覆盖的问题&#xff1f;使用less通过配置&#xff0c;更改vite的css默认行为 系列全集 &#xff08;01&#xff09;vite 从启动服务器开始 &#xff08;02&#xff09;vite环境变量配置 &#xff…

微服务调用组件Feign

JAVA 项目中如何实现接口调用&#xff1f; 1&#xff09;Httpclient HttpClient 是 Apache Jakarta Common 下的子项目&#xff0c;用来提供高效的、最新的、功能丰富 的支持 Http 协议的客户端编程工具包&#xff0c;并且它支持 HTTP 协议最新版本和建议。HttpClient 相比传…

中国信通院公布2023下半年“可信数据库”测试结果

什么是可信数据库&#xff1f;定义具有强制和自主访问控制、审计、数据完整性、身份识别和鉴别、主客体分离等功能的数据库系统。是经过中国信通院评测的数据库产品及周边工具、数据库服务商和应用侧为评价目标的权威评测体系。 该体系包括基础能力、安全、性能、稳定性、服务商…

Explainable Multimodal Emotion Reasoning 多模态可解释性的情感推理

1.摘要 多模态情感识别是人工智能领域的一个活跃的研究课题。它的主要目标是整合多种模态(如听觉、视觉和词汇线索)来识别人类的情绪状态。目前的工作通常假设基准数据集的准确情感标签&#xff0c;并专注于开发更有效的架构。但由于情感固有的主观性&#xff0c;现有数据集往往…

【ARM Trace32(劳特巴赫) 使用介绍 12 -- Trace32 常用命令之 d.dump | data.dump 介绍】

文章目录 Trace32 常用命令之 d.dump | data.dump 介绍1 字节显示 (Byte)4 字节显示&#xff08;word&#xff09;8 字节显示&#xff08;通常long&#xff09;十进制显示显示指定列数显示地址范围内的值 Trace32 常用命令之 d.dump | data.dump 介绍 在 TRACE32 调试环境中&a…

TI 毫米波雷达器件中的自校准功能(TI文档)

摘要 TI 的毫米波雷达传感器包括一个内部处理器和硬件架构&#xff0c;支持自校准和监控。校准可确保在温度和工艺变化范围内维持雷达前端的性能。监控可以周期性测量射频/模拟性能参数并检测潜在故障。 本应用手册简要介绍了校准和监控机制&#xff0c;主要侧重于内部…

解决Linux中文乱码、字体横向问题

解决Linux中文乱码问题 1、locale --查看当先系统编码集 2、echo $LANG --查看当前使用的语言 3、vim ~/.bash_profile --修改配置文件 4、加入以下语句 export LC_ALL"zh_CN.UTF-8" export LANG"zh_CN.UTF-8" 5、source ~/.bash_profile --更新配置文…

Apache solr XXE 漏洞(CVE-2017-12629)

任务一&#xff1a; 复现环境中的漏洞 任务二&#xff1a; 利用XXE漏洞发送HTTP请求&#xff0c;在VPS服务器端接受请求&#xff0c;或收到DNS记录 任务三&#xff1a; 利用XXE漏洞读取本地的/etc/passwd文件 1.搭建环境 2.开始看wp的时候没有看懂为什么是core&#xff0c;然…

京东数据分析(京东数据运营):2023年10月咖啡市场销售数据分析(商家销量销额店铺数据)

随着我国经济的发展及人们消费观念、消费习惯的变化&#xff0c;咖啡消费越来越成为一种时尚生活方式&#xff0c;国内咖啡市场也在快速增长。且在当前互联网新零售的背景下&#xff0c;线上咖啡市场也愈加繁荣。 根据鲸参谋电商数据分析平台的相关数据显示&#xff0c;今年10月…

电商图类型总结

找的一些样例图: 真正从总结性质的电商图类型出发:banner,海报,商品主图,详情图一般不用创意设计工具,目前创意生成比较多的领域还是以banner、海报、商品主图、弱场景图、场景图、社交分享图、DPA等,另外就是在app上比如楼层通栏,横通联板广告位、店铺装修图、页面头…

在线直线度测量仪在圆形轧钢中的重要性

在线直线度测量仪在圆形轧钢中的重要性 在现代轧钢生产中&#xff0c;在线直线度测量仪是一种非常重要的工具&#xff0c;它可以帮助工人和产线进行高精度的直线度和直径测量&#xff0c;从而保证产品质量的稳定性和精度。以下是详细介绍直线度测量仪的重要性和应用。 一、测…

物流实时数仓ODS层——Mysql到Kafka

目录 1.采集流程 2.项目架构 3.resources目录下的log4j.properties文件 4.依赖 5.ODS层——OdsApp 6.环境入口类——CreateEnvUtil 7.kafka工具类——KafkaUtil 8.启动集群项目 这一层要从Mysql读取数据&#xff0c;分为事实数据和维度数据&#xff0c;将不同类型的数据…

Unity加载配置文件【解析Json】

Json 文件 Json文件的存储&#xff1a; 存储在StreamingAssets目录下的&#xff1a;//这里用了游戏配置表常用的Json存储格式-对象数组 {"data":[{"id": 1001,"name": "ScreenFront_1",},{"id": 1002,"name": &…

自定义 el-select 和 el-input 样式

文章目录 需求分析el-select 样式input 样式 需求 自定义 选择框的下拉框的样式和输入框 分析 el-select 样式 .select_box{// 默认placeholder:deep .el-input__inner::placeholder {font-size: 14px;font-weight: 500;color: #3E534F;}// 默认框状态样式更改:deep .el-inp…

U-Shape Transformer for Underwater Image Enhancement(用于水下图像增强的U型Transformer)总结

背景 现有的水下数据集或多或少存在图像数量少、水下场景少、甚至不是真实场景等缺点&#xff0c;限制了数据驱动的水下图像增强方法的性能。此外&#xff0c;水下图像在不同颜色通道和空间区域的衰减不一致也没有统一的框架。 贡献 1&#xff09;提出了一种处理 UIE 任务的…

《洛谷深入浅出进阶篇》同余方程+中国剩余定理——洛谷P1495

这篇文章讲介绍&#xff1a;同余方程&#xff0c;中国剩余定理 什么是同余方程&#xff1f; xy &#xff08;mod p&#xff09;这样的&#xff0c;带同余号的式子就是同余方程。 什么是中国剩余定理&#xff1f; 中国剩余定理&#xff0c;顾名思义是出自中国&#xff0c;它…

CoSeR: Bridging Image and Language for Cognitive Super-Resolution

主页&#xff1a;CoSeR: Bridging Image and Language for Cognitive Super-Resolution (coser-main.github.io) 图像超分辨率技术旨在将低分辨率图像转换为高分辨率图像&#xff0c;从而提高图像的清晰度和细节真实性。这项技术在手机拍照等领域有着广泛的应用和需求。随着超…

Redis5新特性-stream

Stream队列 Redis5.0 最大的新特性就是多出了一个数据结构 Stream&#xff0c;它是一个新的强大的 支持多播的可持久化的消息队列&#xff0c;作者声明 Redis Stream 地借鉴了 Kafka 的设计。 生产者 xadd 追加消息 xdel 删除消息&#xff0c;这里的删除仅仅是设置了标志位&am…

vue.js el-table 动态单元格列合并

一、业务需求&#xff1a; 一个展示列表&#xff0c;表格中有一部分列是根据后端接口动态展示&#xff0c;对于不同类型的数据展示效果不一样。如果接口返回数据是’类型1‘的&#xff0c;则正常展示&#xff0c;如果是’类型2‘的数据&#xff0c;则合并当前数据的动态表格。…