机器学习笔记之优化算法(四)线搜索方法(步长角度;非精确搜索)

机器学习笔记之优化算法——线搜索方法[步长角度,非精确搜索]

  • 引言
    • 回顾:精确搜索步长及其弊端
    • 非精确搜索近似求解最优步长的条件
      • 反例论述

引言

上一节介绍了从精确搜索的步长角度观察了线搜索方法,本节将从非精确搜索的步长角度重新观察线搜索方法。

回顾:精确搜索步长及其弊端

关于线搜索方法的迭代过程表示如下:
x k + 1 = x k + α k ⋅ P k x_{k+1} = x_k + \alpha_k \cdot \mathcal P_k xk+1=xk+αkPk
其中:

  • 变量 x k , x k + 1 ∈ { x k } k = 0 ∞ x_k,x_{k+1} \in \{x_{k}\}_{k=0}^{\infty} xk,xk+1{xk}k=0表示先搜索处理优化问题时,迭代过程中产生的数值解
  • α k \alpha_{k} αk是一个标量,表示步长信息;
  • P k \mathcal P_k Pk可视作一个单位向量,描述当前迭代步骤下数值解更新的方向信息。
    如果 P k \mathcal P_k Pk是一个描述方向的常规向量,依然可以将其表示为”系数 × \times ×单位向量“的形式,最后将系数与 α k \alpha_k αk合并即可。

而基于精确搜索线搜索方法寻找最优步长的基本逻辑是:

  • 固定住单位向量 P k \mathcal P_k Pk,此时关于当前时刻数值解对应的目标函数 f ( x k + 1 ) f(x_{k+1}) f(xk+1)可看作是仅与步长变量 α \alpha α相关的一个函数 ϕ ( α ) \phi(\alpha) ϕ(α)
    f ( x k + 1 ) = f ( x k + α ⋅ P k ) ≜ ϕ ( α ) \begin{aligned} f(x_{k+1}) = f(x_k + \alpha \cdot \mathcal P_k) \triangleq \phi(\alpha) \end{aligned} f(xk+1)=f(xk+αPk)ϕ(α)
  • 通过选择合适步长 α k \alpha_k αk,使得目标函数 f ( x k + 1 ) f(x_{k+1}) f(xk+1)达到最小,从而达到当前迭代步骤优化程度最大的目的
    α k = arg ⁡ min ⁡ α > 0 f ( x k + 1 ) \alpha_k = \mathop{\arg\min}\limits_{\alpha > 0} f(x_{k+1}) αk=α>0argminf(xk+1)

具体步骤表示如下:
对每个迭代步骤 k = 1 , 2 , ⋯ , ∞ k=1,2,\cdots,\infty k=1,2,,执行如下操作:
由于此时 f ( x k + 1 ) = ϕ ( α ) f(x_{k+1}) = \phi(\alpha) f(xk+1)=ϕ(α)仅包含 α \alpha α一个变量,因而仅需要对 ϕ ( α ) \phi(\alpha) ϕ(α)求导,然后从极值中选出最小值即可。

  • 关于 ϕ ( α ) \phi(\alpha) ϕ(α) α \alpha α进行求导操作:
    ∂ ϕ ( α ) ∂ α = [ ∇ f ( x k + α ⋅ P k ) ] T ⋅ P k \frac{\partial \phi(\alpha)}{\partial \alpha} = \left[\nabla f(x_k + \alpha \cdot \mathcal P_k)\right]^T \cdot \mathcal P_k αϕ(α)=[f(xk+αPk)]TPk
  • ∂ ϕ ( α ) ∂ α ≜ 0 \begin{aligned}\frac{\partial \phi(\alpha)}{\partial \alpha} \triangleq 0\end{aligned} αϕ(α)0,从而求解位于极值点 α \alpha α信息,再选择使 f ( x k + 1 ) f(x_{k+1}) f(xk+1)最小对应的 α \alpha α即可,示例图像表示如下:
    这仅仅是关于 ϕ ( α ) \phi(\alpha) ϕ(α)的一种描述。由于我们对目标函数 f ( ⋅ ) f(\cdot) f()未知,我们不能得到 ϕ ( α ) \phi(\alpha) ϕ(α)精确的函数图像。唯一知道 ϕ ( 0 ) = f ( x k ) \phi(0) = f(x_k) ϕ(0)=f(xk)(无法取到)且 ∂ ϕ ( α ) ∂ α ∣ α = 0 < 0 \begin{aligned}\frac{\partial \phi(\alpha)}{\partial \alpha} |_{\alpha=0} < 0\end{aligned} αϕ(α)α=0<0,详细过程见上一节。
    phi(alpha)函数图像示例

貌似上述流程看起来并不复杂,但在真实环境下,精确搜索参与的迭代过程可能是麻烦的:

  • 首先,对于目标函数 f ( ⋅ ) f(\cdot) f()的复杂程度我们一无所知。真实环境中, f ( ⋅ ) f(\cdot) f()可能是极复杂的。这意味着: ∂ ϕ ( α ) ∂ α \begin{aligned}\frac{\partial \phi(\alpha)}{\partial \alpha}\end{aligned} αϕ(α)可能极难表达甚至是无法表达
  • 其中求导以及获取极值的操作仅仅是一次迭代过程中的操作。若每一次迭代过程都要执行上述操作,对应的计算代价有可能极高
  • 实际上,精确求解当前迭代步骤的最优步长不是我们关注的重点,我们希望每次迭代过程中,使用较小的计算代价得到一个比较不错的步长结果,从而降低整体计算代价。

很明显,精确搜索的求解过程是一个求解析解的过程。下面我们观察如何通过求解数值解的方式对最优步长的获取过程进行优化。

非精确搜索近似求解最优步长的条件

首先思考:步长变量 α \alpha α需要满足什么条件,才能够使 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0收敛,并最终得到目标函数的最优解 f ∗ f^* f
{ f ( x k ) } k = 0 ∞ ⇒ f ∗ \{f(x_k)\}_{k=0}^{\infty} \Rightarrow f^* {f(xk)}k=0f
根据我们关于线搜索方法的假设,首先必然需要使 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0服从严格的单调性
ϕ ( α ) = f ( x k + 1 ) < f ( x k ) = ϕ ( 0 ) k = 0 , 1 , 2 , ⋯ \phi(\alpha) = f(x_{k+1}) < f(x_k) = \phi(0) \quad k=0,1,2,\cdots ϕ(α)=f(xk+1)<f(xk)=ϕ(0)k=0,1,2,
新的思考:如果步长变量 α \alpha α仅仅满足上述条件,是否能够保证 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0最终收敛至最优解 ? ? ?

答案是否定的,并且关于两个事件:

  • 事件 1 1 1 ϕ ( α ) = f ( x k + 1 ) < f ( x k ) = ϕ ( 0 ) k = 0 , 1 , 2 , ⋯ \phi(\alpha) = f(x_{k+1}) < f(x_k) = \phi(0) \quad k=0,1,2,\cdots ϕ(α)=f(xk+1)<f(xk)=ϕ(0)k=0,1,2,
  • 事件 2 2 2 { f ( x k ) } k = 0 ∞ ⇒ f ∗ \{f(x_k)\}_{k=0}^{\infty} \Rightarrow f^* {f(xk)}k=0f

事件 1 1 1是事件 2 2 2必要不充分条件。也就是说:事件 1 1 1推不出事件 2 2 2,相反,事件 2 2 2能够推出事件 1 1 1

反例论述

这里描述一个反例

  • 假设真正的目标函数 f ( ⋅ ) f(\cdot) f()表示如下:
    目标函数示例

可以看出,该目标函数存在最小值 − 1 -1 1。而我们的目标是通过求数值解的方式取到 − 1 -1 1

  • 而这个数值解仅仅受到事件 1 1 1的约束。也就是说:在迭代过程中仅满足 f ( x k + 1 ) < f ( x k ) f(x_{k+1}) < f(x_k) f(xk+1)<f(xk)即可。至此,假设:数值解 { x k } k = 1 ∞ \{x_k\}_{k=1}^{\infty} {xk}k=1对应的目标函数结果 { f ( x k ) } k = 1 ∞ \{f(x_k)\}_{k=1}^{\infty} {f(xk)}k=1满足如下函数
    f ( x k ) = 5 k f(x_{k}) = \frac{5}{k} f(xk)=k5
    解释:
    函数 f ( x k ) = 5 k \begin{aligned} f(x_k) = \frac{5}{k}\end{aligned} f(xk)=k5我们假设的,隐藏在背后的逻辑。而真正被我们看到的是下面由表格组成的关于 { f ( x k ) } k = 1 ∞ \{f(x_k)\}_{k=1}^{\infty} {f(xk)}k=1的序列信息:
    其中 x 0 x_0 x0是初始化的,不在函数内。这里假设 x 0 = 10 x_0 = 10 x0=10,但在本示例中假设的值要 > 5 = f ( x 1 ) >5 = f(x_1) >5=f(x1)。之所以要将函数设置成这种格式,是因为基于该函数产生的序列满足事件1: f ( x k + 1 ) < f ( x k ) f(x_{k+1}) < f(x_k) f(xk+1)<f(xk)
k k k 0 ( init ) 0(\text{init}) 0(init) 1 1 1 2 2 2 3 3 3 ⋯ \cdots
f ( x k ) f(x_k) f(xk) 10 10 10 5 5 5 5 2 \begin{aligned}\frac{5}{2}\end{aligned} 25 5 3 \begin{aligned}\frac{5}{3}\end{aligned} 35 ⋯ \cdots

至此,我们找到了一组满足事件 1 1 1由数值解的目标函数结果构成的序列 { f ( x k ) } k = 0 ∞ = { 10 , 5 , 5 2 , 5 3 , ⋯ } \{f(x_k)\}_{k=0}^{\infty} = \left\{10,5,\begin{aligned}\frac{5}{2},\frac{5}{3},\cdots\end{aligned} \right\} {f(xk)}k=0={10,5,25,35,},我们观察:这组序列是否能够找到目标函数最优解

  • 初始状态下, [ x 0 , f ( x 0 ) = 10 ] [x_0,f(x_0) = 10] [x0,f(x0)=10]在图中表示如下。
    • 由于此时的梯度仅仅是一个 1 1 1维向量,在函数图像中对应函数在该点上的斜率。而在横坐标上,梯度的方向仅有两个:正向(右侧;顺着坐标轴的方向);反向(逆着坐标轴的方向)。因此,图中所说的下降方向必然是最速下降方向(因为只有两个方向)。
    • 由于 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))在图中对应位置的斜率是正值,因此下一时刻更新的方向必然是负梯度方向(反向),见红色箭头。
      初始化x0
  • 观察第二个点: [ x 1 , f ( x 1 ) = 5 ] [x_1,f(x_1) = 5] [x1,f(x1)=5],对应图像表示如下:
    • 在该目标函数中,函数值为 5 5 5存在两个对应的横坐标。实际上取哪个点都不影响梯度的观察。这里为方便观察,取左侧的横坐标,后续类似情况同理。
    • 左侧点斜率是负值,因而它的负梯度方向是正向,见红色箭头。
      x0x1
  • 同理,可以将 [ x 2 , f ( x 2 ) = 5 2 ] , [ x 3 , f ( x 3 ) = 5 3 ] \begin{aligned} \left[x_2,f(x_2) = \frac{5}{2}\right],\left[x_3,f(x_3) = \frac{5}{3}\right]\end{aligned} [x2,f(x2)=25],[x3,f(x3)=35]及其对应梯度方向表示在图像上:
    x0-x3
  • 以此类推。我们可以按照 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0的顺序,将梯度变化路径用红色箭头描述出来:
    梯度变化路径示例
  • 从上图可以看出,随着迭代次数 k k k的增加,我们都会产生新的点并震荡下去。但是否能够震荡到最小值 ? ? ?这取决于: k → ∞ k \to \infty k时, f ( x k ) f(x_k) f(xk)的取值结果
    lim ⁡ k → ∞ f ( x k ) = 5 ∞ ≈ 0 \mathop{\lim}\limits_{k \to \infty} f(x_k) = \frac{5}{\infty} \approx 0 klimf(xk)=50
    最终,它只会在 x x x轴的上方,无限地朝向 0 0 0的方向震荡,而不会越过 x x x轴,向最优值 − 1 -1 1进行震荡

综上,上述反例满足事件 1 1 1的条件,但它可能不会一定收敛到最优解。也就是说:仅使用 f ( x k + 1 ) < f ( x k ) f(x_{k+1}) < f(x_k) f(xk+1)<f(xk)对步长 α \alpha α进行判别是不可行的
上述反例描述的是: { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0能够收敛,但没有收敛到最优解。

相关参考:
【优化算法】线搜索方法-步长-非确定性搜索

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/19597.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝网科技股份有限公司存在SQL注入

书把他从沉重的生活中拉出来&#xff0c;使他的精神不致被劳动压的麻木不仁。通过不断地读书&#xff0c;他认识到&#xff0c;只有一个人对世界了解得更广大&#xff0c;对人生看得更深刻&#xff0c;那么&#xff0c;他才可能对自己所处的艰难和困苦有更高意义的理解&#xf…

AI 绘画Stable Diffusion 研究(五)sd文生图功能详解(下)

大家好&#xff0c;我是风雨无阻。 上一篇文章详细介绍了sd文生图的功能及使用注意事项&#xff0c;感兴趣的朋友可以前往查看&#xff1a;AI 绘画Stable Diffusion 研究&#xff08;四&#xff09;sd文生图功能详解&#xff08;上&#xff09; 。 那今天这篇文章&#xff0c;我…

论文阅读 - Social bot detection in the age of ChatGPT: Challenges and opportunities

论文链接&#xff1a;https://www.researchgate.net/publication/371661341_Social_bot_detection_in_the_age_of_ChatGPT_Challenges_and_opportunities 目录 摘要&#xff1a; 引言 1.1. Background on social bots and their role in society 1.2. The rise of AI-gene…

计算机是如何工作的(笔记)

目录 寄存器 操作系统 进程&#xff08;process&#xff09; CPU pcb中关于进程调度相关的属性 寄存器 用来存储数据的单位&#xff0c;是CPU的一部分 寄存器&#xff0c;存储空间更小&#xff0c;访问速度更快&#xff0c;成本更高&#xff0c;掉电后数据会丢失 寄存器…

java 定时任务不按照规定时间执行

这里写目录标题 使用异步启动可能出现的问题排查代码中添加的定时任务步骤是否正确排查是否任务阻塞&#xff0c;如果定时任务出现异常阻塞后&#xff0c;将不会在次执行java中多个Scheduled定时器不执行为了让Scheduled效率更高&#xff0c;我们可以通过两种方法将定时任务变成…

【LeetCode 75】第十五题(1456)定长子串中元音的最大数目

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码运行结果&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 就难度而言&#xff0c;我觉得算不上中等&#xff0c;因为和上一题基本一致&#xff0c;只不过上一题是求最大平均数&#xff0c…

大麦订单生成器 大麦订单购买截图生成

后台一键生成链接&#xff0c;独立后台管理 教程&#xff1a;修改数据库config/Conn.php 不会可以看源码里有教程 下载程序&#xff1a;https://pan.baidu.com/s/16lN3gvRIZm7pqhvVMYYecQ?pwd6zw3

过滤器,监听器与拦截器的区别

过滤器&#xff0c;监听器与拦截器的区别 ​ 过滤器和监听器不是Spring MVC中的组件&#xff0c;而是Servlet的组件&#xff0c;由Servlet容器来管理。拦截器是Spring MVC中的组件&#xff0c;由Spring容器来管理 ​ Servlet过滤器与Spring MVC 拦截器在Web应用中所处的层次如…

node.js系列-多种方案教你在node程序中同时使用CommonJS 和 ES Module 混合开发最佳实践

前情提要 我们平时使用的npm 第三方包一般基于这两种规范开发的&#xff0c;很容易遇到一个项目里既有 CommonJS 又有 ES Module 的情况&#xff0c;那么我们应该如何解决这种CommonJS 和 ES Module 混合开发的问题呢&#xff1f; CommonJS是什么&#xff1f; 2009年&#x…

MySQL主从复制原理以及实操

一、MySQL主从复制原理&#xff1a; 1、MySQL将数据变化记录到二进制日志中&#xff1b; 2、Slave将MySQL的二进制日志拷贝到Slave的中继日志中&#xff1b; 3、Slave将中继日志中的事件在做一次&#xff0c;将数据变化&#xff0c;反应到自身&#xff08;Slave&#xff09;的数…

【Linux】常用的基本指令

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;Linux &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵&#xff0c;希望大佬指点一二 如果文章对…

C# Microsoft消息队列服务器的使用 MSMQ

先安装消息队列服务器 private static readonly string path ".\\Private$\\myQueue";private void Create(){if (!MessageQueue.Exists(path)){MessageQueue.Create(path);}}private void Send(){Stopwatch stopwatch new Stopwatch();stopwatch.Start();Message…

K8s的详细介绍

1.编写yaml文件的方式 2.yaml里面的内容介绍 Pod实现机制&#xff1a;&#xff08;1&#xff09;共享网络&#xff08;2&#xff09;共享存储 共享网络:通过Pause容器&#xff0c;把其他业务容器加入到Pause容器里面&#xff0c;让所有业务容器在同一个名称空间中&#xff0c;…

【Spring Cloud 三】Eureka服务注册与服务发现

系列文章目录 【Spring Cloud一】微服务基本知识 Eureka服务注册与服务发现 系列文章目录前言一、什么是Eureka&#xff1f;二、为什么要有服务注册发现中心&#xff1f;三、Eureka的特性四、搭建Eureka单机版4.1Eureka服务端项目代码pom文件配置文件启动类启动项目查看效果 E…

海量小文件传输慢的原因以及对应的优化方案

在日常工作中&#xff0c;我们经常遇到需要传输一些小文件的情况&#xff0c;但是当小文件的数量很多的时候&#xff0c;为什么小文件传输的速度就会变得很慢呢&#xff1f;为什么复制许多较小的文件时&#xff0c;小文件传输效率就会降低呢&#xff1f;针对这些问题&#xff0…

Mybatis插件

文章目录 1. 如何自定义插件1.1 创建接口Interceptor的实现类1.2 配置拦截器1.3 运行程序 2. 插件原理2.1 解析过程2.2 创建代理对象2.2.1 Executor2.2.2 StatementHandler2.2. 3ParameterHandler2.2.4 ResultSetHandler 2.3 执行流程2.4 多拦截器的执行顺序 3. PageHelper3.1 …

聊天系统登录后端实现

定义返回的数据格式 # Restful API from flask import jsonifyclass HttpCode(object):# 响应正常ok 200# 没有登陆错误unloginerror 401# 没有权限错误permissionerror 403# 客户端参数错误paramserror 400# 服务器错误servererror 500def _restful_result(code, messa…

Matlab Optimization Toolbox中的遗传算法工具包(GA)

matlab optimization 中使用了GA求解器 默认的是小于等于 找到GA 工具包 找到 APP选择 Optimization Tool 选择Solver ga - Genetic Algorithm 应用GA solver 定义适应度函数(Fitness function)与问题约束(Constraints) example one 优化函数 sin(x) 2 * cos(x)极其重要的…

windows10 设置代理

场景&#xff1a;同一个办公室&#xff0c;只有A的电脑有权限访问网站 http://10.129.129.129:5601&#xff0c; 那办公室其他B,C同学想访问 http://10.129.129.129:5601&#xff0c;需要怎么处理&#xff1f; A 同学电脑安装代理软件&#xff1a; 1. 下载wproxy IMFirewall, …

iMX6ULL驱动开发 | 让imx6ull开发板支持usb接口FC游戏手柄

手边有一闲置的linux开发板iMX6ULL一直在吃灰&#xff0c;不用来搞点事情&#xff0c;总觉得对不住它。业余打发时间就玩起来吧&#xff0c;总比刷某音强。从某多多上8块儿大洋买来一个usb接口的游戏手柄&#xff0c;让开发板支持以下它&#xff0c;后续就可以接着在上面玩童年…