为何要3次握手?TCP协议的稳定性保障机制

🚀 作者主页: 有来技术
🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot
🌺 仓库主页: Gitee 💫 Github 💫 GitCode
💖 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请纠正!

目录

  • 引言
  • 为什么需要3次握手建立TCP连接?
    • 1. 第一次握手:建立连接请求
    • 2. 第二次握手:确认连接请求
    • 3. 第三次握手:确认连接接受
    • 为什么不采用2次握手建立连接?
  • 为什么需要4次挥手断开TCP连接?
    • 1. 第一次挥手:发起关闭连接
    • 2. 第二次挥手:确认关闭请求
    • 3. 第三次挥手:发起关闭确认
    • 4. 第四次挥手:确认关闭确认
    • 为什么不采用3次挥手断开连接?
  • 结语
  • 开源项目

引言

TCP(Transmission Control Protocol)是计算机网络中一种可靠的传输协议,负责确保数据的可靠传输。TCP连接的建立和断开过程分别通过3次握手和4次挥手来完成。本文将深入探讨为什么TCP需要进行3次握手来建立连接,以及为何在断开连接时采用4次挥手而不是2次握手和3次挥手。

为什么需要3次握手建立TCP连接?

在这里插入图片描述

1. 第一次握手:建立连接请求

在进行TCP连接时,客户端首先向服务器发送连接请求,这是第一次握手。这一步的目的是告诉服务器客户端想要建立连接,并初始化一些参数,如序列号等。

2. 第二次握手:确认连接请求

服务器收到客户端的连接请求后,进行确认并发送自己的连接请求给客户端,这是第二次握手。这一步的目的是告诉客户端服务器接受连接请求,并同样初始化一些参数。

3. 第三次握手:确认连接接受

客户端收到服务器的连接请求后,进行确认,这是第三次握手。这一步的目的是确保双方都已准备好建立连接。此时,双方都知道对方已成功接受连接。

为什么不采用2次握手建立连接?

如果只进行2次握手,客户端发送连接请求,服务器确认后即建立连接。但这样存在的问题是,如果确认的消息在网络中滞留,客户端会认为连接已建立,而服务器不清楚,可能导致连接的不确定性和不稳定性。因此,3次握手是为了确保双方都确认了连接的建立,降低了不确定性。

为什么需要4次挥手断开TCP连接?

在这里插入图片描述

1. 第一次挥手:发起关闭连接

在断开连接时,任一一方可以发起关闭连接的请求,这是第一次挥手。发起方发送带有FIN(Finish)标志的报文,表示不再发送数据。

2. 第二次挥手:确认关闭请求

接收到关闭请求的一方发回确认,并可以继续发送数据,这是第二次挥手。此时,接收方通告自己已经准备好关闭连接,但仍可发送剩余的数据。

3. 第三次挥手:发起关闭确认

接收方在完成发送数据后,发起关闭确认请求,这是第三次挥手。该请求包含FIN标志,表示不再发送数据。

4. 第四次挥手:确认关闭确认

发起方接收到关闭确认请求后,发回确认,并等待一段时间以确保对方已经接收到关闭确认,这是第四次挥手。之后,双方的连接才算正式关闭。

为什么不采用3次挥手断开连接?

如果只进行3次挥手,发起方发送关闭请求,接收方发回确认后即关闭连接。但这样可能存在一些未完成的数据传输,因为接收方在发送确认后仍可以继续发送数据。通过引入第四次挥手,确保双方都完成了关闭确认,避免了可能的数据残留和不确定性。

结语

TCP连接的3次握手和4次挥手是为了确保连接的建立和断开的稳定性和可靠性。通过这些握手和挥手步骤,TCP协议能够有效地管理连接,保障数据的可靠传输。虽然增加了握手和挥手的次数,但这是为了防范可能出现的问题,确保网络通信的可靠性和稳定性。在实际应用中,这种权衡是TCP协议成功的关键之一。

开源项目

  • SpringCloud + Vue3 微服务商城
GithubGitee
后端youlai-mall 🍃youlai-mall 🍃
前端mall-admin🌺mall-admin 🌺
移动端mall-app 🍌mall-app 🍌
  • SpringBoot 3+ Vue3 单体权限管理系统
GithubGitee
后端youlai-boot 🍃youlai-boot 🍃
前端vue3-element-admin 🌺vue3-element-admin 🌺

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/194606.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

操作系统·存储器管理

根据冯诺依曼原理,程序必须先存储在内存中,才可以执行。 在多道程序并发执行的系统存储器管理非常重要。 5.1 存储器管理的功能 5.1.1 主存分配与回收 要完成内存的分配和回收工作,要求设计者选择和确定几种策略和结构: 1.调入…

STM32F407-14.3.10-01PWM模式

PWM 模式 脉冲宽度调制模式可以生成一个信号,该信号频率由 TIMx_ARR⑩ 寄存器值决定,其占空比由 TIMx_CCRx⑤ 寄存器值决定。 通过向 TIMx_CCMRx 寄存器中的 OCxM⑰ 位写入 110 (PWM 模式 1)或 111 (PWM 模式 2&#…

SpringCloud简介和用处

Spring Cloud是一套基于Spring Boot的微服务框架,它旨在提供一种快速构建分布式系统的方法。它可以帮助开发人员构建具有高可用性、可扩展性和容错性的微服务,并通过Spring Boot的开发工具和库提供强大的支持。 一、简介 Spring Cloud是Spring家族中的一…

React如何像Vue一样将css和js写在同一文件

如果想在React中想要像Vue一样把css和js写到一个文件中,可以使用CSS-in-JS。 使用CSS-in-JS 下载 npm i styled-components使用 就像写scss一样,不过需要声明元素的类型 基本语法及展示如下, import styled from "styled-component…

周周清(1)

项目进度&#xff1a; 最近一直在搭建环境&#xff0c;都没写什么&#xff1a;登陆页面采用登陆注册在同一个界面&#xff0c;用v-if进行渲染&#xff0c;并且借助validation插件中的yup神器进行校验&#xff0c; <script setup> // import { ref } from vue import * …

Qt配置OpenCV(MSVC编译)

目录 1.准备工具 1.1 Qt&#xff1a;5.14.2 64位 1.2 Opencv&#xff1a;4.6.0 1.3 Visual Studio 2017 2. QtMSVC开发环境搭建 3. 配置环境变量 3.1 Opencv环境变量配置 4. Qt 代码测试 1.准备工具 1.1 Qt&#xff1a;5.14.2 64位 1.2 Opencv&#xff1a;4.6.0 官…

数据库-PostgreSQL学习笔记

目录 PostgreSQL介绍与安装docker安装腾讯云免费领用1个月 数据库操作连接数据库实例创建数据库查看数据库列表使用数据库删除数据库修改数据库属性 表操作字段类型整数浮点数日期与时间类型字符串类型 DDLCREATEDROPALTER DMLINSERTUPDATEDELETE 查询查询所有数据查询部分列指…

Windows驱动中校验数字签名(使用 ci.dll)

1.背景 对于常规应用程序来说&#xff0c;校验数字签名认证在应用层可以使用 WinVerifyTrust, 在驱动层使用常规的 API无法使用&#xff0c;自己分析数据又太麻烦。 在内核中 ci.dll 包装了数据签名验证相关的功能&#xff0c;我们可以使用该 dll 来实现我们的数字签名验证。 详…

Siemens-NXUG二次开发-新建与保存prt文件[Python UF][20231204]

Siemens-NXUG二次开发-新建与保存prt文件[Python UF][20231204] 1.python uf函数1.1 NXOpen.UF.Part.New1.2 NXOpen.UF.Part.Save1.3 NXOpen.UF.Ui.OpenListingWindow1.4 NXOpen.UF.Ui.IsListingWindowOpen1.5 NXOpen.UF.Ui.WriteListingWindow1.6 NXOpen.UF.Ui.SaveListingWin…

电气间隙和爬电距离的算法

电气间隙和爬电距离 一、定义 1、电气间隙&#xff1a;不同电位的两个导电部件间最短的空间直线距离。 2、爬电距离&#xff1a;不同电位的两个导电部件之间沿绝缘材料表面的最短距离。 3、隔离距离&#xff08;机械式开关电器一个极的&#xff09;&#xff1a;满足对隔离器…

华为手环关闭智能适时测量

问题 使用华为手环并使用华为创新研究APP后&#xff0c;会自动打开智能适时测量开关&#xff0c;此开关开启后&#xff0c;手环会在睡眠时间自动测量血氧&#xff0c;增加手环功耗从而影响续航&#xff0c;用户可根据自身需求决定是否开启&#xff0c;下文介绍如何找到此开关。…

Stable Diffusion 系列教程 - 1 基础准备(针对新手)

使用SD有两种方式&#xff1a; 本地&#xff1a; 显卡要求&#xff1a;硬件环境推荐NVIDIA的具有8G显存的独立显卡&#xff0c;这个显存勉勉强强能摸到门槛。再往下的4G可能面临各种炸显存、炼丹失败、无法生成图片等各种问题。对于8G显存&#xff0c;1.0模型就不行&#xff0…

洛谷 P9516 color C++代码

目录 前言 思路点拨 AC代码 结尾 前言 今天我们来做洛谷上的一道题目。 网址&#xff1a;color - 洛谷 题目&#xff1a; 思路点拨 这题就是if-else判断输入的五个数据和不就OK了&#xff1f; 在这里我的估值是183&#xff08;截止2023.12.3&#xff09;&#xff0c;热…

【力扣】56. 合并区间

【力扣】56. 合并区间 文章目录 【力扣】56. 合并区间1. 题目介绍2. 解法2.1 方法一&#xff1a;标志位2.2 方法二&#xff1a;排序 遍历 3. Danger参考 1. 题目介绍 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合…

Linux系统配置深度学习环境之cudnn安装

前言 一个针对深度学习应用优化的 GPU 加速库。它提供了高性能、高可靠性的加速算法&#xff0c;旨在加速深度神经网络模型的训练和推理过程。 cuDNN 提供了一系列优化的基本算法和函数&#xff0c;包括卷积、池化、规范化、激活函数等&#xff0c;以及针对深度学习任务的高级功…

移动平均滤波的原理和C代码

移动平均滤波是一种简单有效的平滑信号的方法&#xff0c;它通过计算一系列数据点的平均值来减小信号中的波动。基本的移动平均滤波方法有两种&#xff1a;简单移动平均&#xff08;SMA&#xff09;和指数加权移动平均&#xff08;EWMA&#xff09;。 简单移动平均滤波&#xf…

Go读取yaml文件,struct返回,json输出

程序模块中&#xff0c;缺少不了一些配置定义&#xff0c;这时定义yaml是个很好的选择 先定义yaml文件内容&#xff0c;文件名为&#xff1a;task_status_config.yaml confs:#阅读类任务&#xff0c;即提醒任务read:name: readawait: #待开始任务status_id: 0ing: #进行中任务…

53.redis分布式缓存

目录 一、单机安装Redis。 二、Redis主从集群。 2.1.集群结构 2.2.准备实例和配置 2.3.启动 2.4.开启主从关系 2.5.测试 三、搭建哨兵集群。 3.1.集群结构 3.2.准备实例和配置 3.3.启动 3.4.测试 四、搭建分片集群。 4.1.集群结构 4.2.准备实例和配置 4.3.启动…

监控之Spring Boot Admin

目录 一、Spring Boot Admin 简介 官方网址 简介 二、Spring Boot Admin的使用 启动SBA server 微服务端配置SBA server地址 查看监控信息 一、Spring Boot Admin 简介 官方网址 GitHup网址&#xff1a;GitHub - codecentric/spring-boot-admin: Admin UI for administ…

Linux下Redis安装及配置

首先下载redis安装包&#xff1a;地址 这里我使用的是7.0版本的&#xff01; 将文件上传至linux上&#xff0c;此处不再多叙述&#xff0c;不会操作的&#xff0c;建议使用ftp&#xff01; 第一步&#xff1a;解压压缩包 tar -zxvf redis-7.0.14.tar.gz第二步&#xff1a;移…