1、Nginx反向代理概述
关于正向代理和反向代理,我们在前面的章节已经通过一张图给大家详细的介绍过了,简而言之就是正向代理代理的对象是客户端,反向代理代理的是服务端,这是两者之间最大的区别。
Nginx即可以实现正向代理,也可以实现反向代理。
我们先来通过一个小案例演示下Nginx正向代理的简单应用。
先提需求:
(1)服务端的设置:
http {log_format main 'client send request=>clientIp=$remote_addr serverIp=>$host';server{listen 80;server_name localhost;access_log logs/access.log main;location {root html;index index.html index.htm;}}
}
(2)使用客户端访问服务端,打开日志查看结果
(3)代理服务器设置:
server {listen 82;resolver 8.8.8.8;location /{proxy_pass http://$host$request_uri;}}
(4)查看代理服务器的IP(192.168.200.146)和Nginx配置监听的端口(82)
(5)在客户端配置代理服务器
(6)设置完成后,再次通过浏览器访问服务端
通过对比,上下两次的日志记录,会发现虽然我们是客户端访问服务端,但是如何使用了代理,那么服务端能看到的只是代理发送过去的请求,这样的化,就使用Nginx实现了正向代理的设置。
但是Nginx正向代理,在实际的应用中不是特别多,所以我们简单了解下,接下来我们继续学习Nginx的反向代理,这是Nginx比较重要的一个功能。
1.1、Nginx反向代理的配置语法
Nginx反向代理模块的指令是由ngx_http_proxy_module模块进行解析,该模块在安装Nginx的时候已经自己加装到Nginx中了,接下来我们把反向代理中的常用指令一一介绍下:
proxy_pass
proxy_set_header
proxy_redirect
proxy_pass
该指令用来设置被代理服务器地址,可以是主机名称、IP地址加端口号形式。
语法 | proxy_pass URL; |
默认值 | — |
位置 | location |
URL:为要设置的被代理服务器地址,包含传输协议(http,https://)、主机名称或IP地址加端口号、URI等要素。
举例:
proxy_pass http://www.baidu.com;
location /server{}
proxy_pass http://192.168.200.146;http://192.168.200.146/server/index.html
proxy_pass http://192.168.200.146/;http://192.168.200.146/index.html
大家在编写proxy_pass的时候,后面的值要不要加"/"?
接下来通过例子来说明刚才我们提到的问题:
server {listen 80;server_name localhost;location /{#proxy_pass http://192.168.200.146;proxy_pass http://192.168.200.146/;}
}
当客户端访问 http://localhost/index.html,效果是一样的
server{listen 80;server_name localhost;location /server{#proxy_pass http://192.168.200.146;proxy_pass http://192.168.200.146/;}
}
当客户端访问 http://localhost/server/index.html
这个时候,第一个proxy_pass就变成了http://localhost/server/index.html
第二个proxy_pass就变成了http://localhost/index.html效果就不一样了。
proxy_set_header
该指令可以更改Nginx服务器接收到的客户端请求的请求头信息,然后将新的请求头发送给代理的服务器
语法 | proxy_set_header field value; |
默认值 | proxy_set_header Host $proxy_host;proxy_set_header Connection close; |
位置 | http、server、location |
需要注意的是,如果想要看到结果,必须在被代理的服务器上来获取添加的头信息。
被代理服务器: [192.168.200.146]
server {listen 8080;server_name localhost;default_type text/plain;return 200 $http_username;
}
代理服务器: [192.168.200.133]
server {listen 8080;server_name localhost;location /server {proxy_pass http://192.168.200.146:8080/;proxy_set_header username TOM;}}
访问测试
proxy_redirect
该指令是用来重置头信息中的"Location"和"Refresh"的值。
语法 | proxy_redirect redirect replacement;proxy_redirect default;proxy_redirect off; |
默认值 | proxy_redirect default; |
位置 | http、server、location |
为什么要用该指令?
服务端[192.168.200.146]
server {listen 8081;server_name localhost;if (!-f $request_filename){return 302 http://192.168.200.146;}
}
代理服务端[192.168.200.133]
server {listen 8081;server_name localhost;location / {proxy_pass http://192.168.200.146:8081/;proxy_redirect http://192.168.200.146 http://192.168.200.133;}
}
该指令的几组选项
proxy_redirect redirect replacement;
redirect:目标,Location的值
replacement:要替换的值
proxy_redirect default;
default;
将location块的uri变量作为replacement,
将proxy_pass变量作为redirect进行替换
proxy_redirect off;
关闭proxy_redirect的功能
1.2、Nginx反向代理实战
服务器1,2,3存在两种情况
第一种情况: 三台服务器的内容不一样。
第二种情况: 三台服务器的内容是一样。
- 如果服务器1、服务器2和服务器3的内容不一样,那我们可以根据用户请求来分发到不同的服务器。
代理服务器
server {listen 8082;server_name localhost;location /server1 {proxy_pass http://192.168.200.146:9001/;}location /server2 {proxy_pass http://192.168.200.146:9002/;}location /server3 {proxy_pass http://192.168.200.146:9003/;}
}服务端
server1
server {listen 9001;server_name localhost;default_type text/html;return 200 '<h1>192.168.200.146:9001</h1>'
}
server2
server {listen 9002;server_name localhost;default_type text/html;return 200 '<h1>192.168.200.146:9002</h1>'
}
server3
server {listen 9003;server_name localhost;default_type text/html;return 200 '<h1>192.168.200.146:9003</h1>'
}
- 如果服务器1、服务器2和服务器3的内容是一样的,该如何处理?
1.3、Nginx的安全控制
关于web服务器的安全是比较大的一个话题,里面所涉及的内容很多,Nginx反向代理是如何来提升web服务器的安全呢?
安全隔离
什么是安全隔离?
通过代理分开了客户端到应用程序服务器端的连接,实现了安全措施。在反向代理之前设置防火墙,仅留一个入口供代理服务器访问。
1.4、如何使用SSL对流量进行加密
翻译成大家能熟悉的说法就是将我们常用的http请求转变成https请求,那么这两个之间的区别简单的来说两个都是HTTP协议,只不过https是身披SSL外壳的http.
HTTPS是一种通过计算机网络进行安全通信的传输协议。它经由HTTP进行通信,利用SSL/TLS建立全通信,加密数据包,确保数据的安全性。
SSL(Secure Sockets Layer)安全套接层
TLS(Transport Layer Security)传输层安全
上述这两个是为网络通信提供安全及数据完整性的一种安全协议,TLS和SSL在传输层和应用层对网络连接进行加密。
总结来说为什么要使用https:
http协议是明文传输数据,存在安全问题,而https是加密传输,相当于http+ssl,并且可以防止流量劫持。
Nginx要想使用SSL,需要满足一个条件即需要添加一个模块--with-http_ssl_module,而该模块在编译的过程中又需要OpenSSL的支持,这个我们之前已经准备好了。
1.5、nginx添加SSL的支持
(1)完成 --with-http_ssl_module模块的增量添加
》将原有/usr/local/nginx/sbin/nginx进行备份
》拷贝nginx之前的配置信息
》在nginx的安装源码进行配置指定对应模块 ./configure --with-http_ssl_module
》通过make模板进行编译
》将objs下面的nginx移动到/usr/local/nginx/sbin下
》在源码目录下执行 make upgrade进行升级,这个可以实现不停机添加新模块的功能
1.6、Nginx的SSL相关指令
因为刚才我们介绍过该模块的指令都是通过ngx_http_ssl_module模块来解析的。
ssl:该指令用来在指定的服务器开启HTTPS,可以使用 listen 443 ssl,后面这种方式更通用些。
语法 | ssl on | off; |
默认值 | ssl off; |
位置 | http、server |
server{listen 443 ssl;
}
ssl_certificate:为当前这个虚拟主机指定一个带有PEM格式证书的证书。
语法 | ssl_certificate file; |
默认值 | — |
位置 | http、server |
ssl_certificate_key:该指令用来指定PEM secret key文件的路径
语法 | ssl_ceritificate_key file; |
默认值 | — |
位置 | http、server |
ssl_session_cache:该指令用来配置用于SSL会话的缓存
语法 | ssl_sesion_cache off|none|[builtin[:size]] [shared:name:size] |
默认值 | ssl_session_cache none; |
位置 | http、server |
off:禁用会话缓存,客户端不得重复使用会话
none:禁止使用会话缓存,客户端可以重复使用,但是并没有在缓存中存储会话参数
builtin:内置OpenSSL缓存,仅在一个工作进程中使用。
shared:所有工作进程之间共享缓存,缓存的相关信息用name和size来指定
ssl_session_timeout:开启SSL会话功能后,设置客户端能够反复使用储存在缓存中的会话参数时间。
语法 | ssl_session_timeout time; |
默认值 | ssl_session_timeout 5m; |
位置 | http、server |
ssl_ciphers:指出允许的密码,密码指定为OpenSSL支持的格式
语法 | ssl_ciphers ciphers; |
默认值 | ssl_ciphers HIGH:!aNULL:!MD5; |
位置 | http、server |
可以使用openssl ciphers查看openssl支持的格式。
ssl_prefer_server_ciphers:该指令指定是否服务器密码优先客户端密码
语法 | ssl_perfer_server_ciphers on|off; |
默认值 | ssl_perfer_server_ciphers off; |
位置 | http、server |
生成证书
方式一:使用阿里云/腾讯云等第三方服务进行购买。
方式二:使用openssl生成证书
先要确认当前系统是否有安装openssl
openssl version
安装下面的命令进行生成
mkdir /root/cert
cd /root/cert
openssl genrsa -des3 -out server.key 1024
openssl req -new -key server.key -out server.csr
cp server.key server.key.org
openssl rsa -in server.key.org -out server.key
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt
开启SSL实例
server {listen 443 ssl;server_name localhost;ssl_certificate server.cert;ssl_certificate_key server.key;ssl_session_cache shared:SSL:1m;ssl_session_timeout 5m; ssl_ciphers HIGH:!aNULL:!MD5;ssl_prefer_server_ciphers on;location / {root html;index index.html index.htm;}
}
(4)验证
2、负载均衡概述
早期的网站流量和业务功能都比较简单,单台服务器足以满足基本的需求,但是随着互联网的发展,业务流量越来越大并且业务逻辑也跟着越来越复杂,单台服务器的性能及单点故障问题就凸显出来了,因此需要多台服务器进行性能的水平扩展及避免单点故障出现。那么如何将不同用户的请求流量分发到不同的服务器上呢?
2.1、负载均衡的原理及处理流程
系统的扩展可以分为纵向扩展和横向扩展。
纵向扩展是从单机的角度出发,通过增加系统的硬件处理能力来提升服务器的处理能力
横向扩展是通过添加机器来满足大型网站服务的处理能力。
这里面涉及到两个重要的角色分别是"应用集群"和"负载均衡器"。
应用集群:将同一应用部署到多台机器上,组成处理集群,接收负载均衡设备分发的请求,进行处理并返回响应的数据。
负载均衡器:将用户访问的请求根据对应的负载均衡算法,分发到集群中的一台服务器进行处理。
负载均衡的作用
1、解决服务器的高并发压力,提高应用程序的处理性能。
2、提供故障转移,实现高可用。
3、通过添加或减少服务器数量,增强网站的可扩展性。
4、在负载均衡器上进行过滤,可以提高系统的安全性。
2.2、负载均衡常用的处理方式
方式一:用户手动选择
这种方式比较原始,只要实现的方式就是在网站主页上面提供不同线路、不同服务器链接方式,让用户来选择自己访问的具体服务器,来实现负载均衡。
方式二:DNS轮询方式
DNS
域名系统(服务)协议(DNS)是一种分布式网络目录服务,主要用于域名与 IP 地址的相互转换。
大多域名注册商都支持对同一个主机名添加多条A记录,这就是DNS轮询,DNS服务器将解析请求按照A记录的顺序,随机分配到不同的IP上,这样就能完成简单的负载均衡。DNS轮询的成本非常低,在一些不重要的服务器,被经常使用。
如下是我们为某一个域名添加的IP地址,用2台服务器来做负载均衡。
验证:
ping www.nginx521.cn
清空本地的dns缓存
ipconfig/flushdns
我们发现使用DNS来实现轮询,不需要投入过多的成本,虽然DNS轮询成本低廉,但是DNS负载均衡存在明显的缺点。
1.可靠性低
假设一个域名DNS轮询多台服务器,如果其中的一台服务器发生故障,那么所有的访问该服务器的请求将不会有所回应,即使你将该服务器的IP从DNS中去掉,但是由于各大宽带接入商将众多的DNS存放在缓存中,以节省访问时间,导致DNS不会实时更新。所以DNS轮流上一定程度上解决了负载均衡问题,但是却存在可靠性不高的缺点。
2.负载均衡不均衡
DNS负载均衡采用的是简单的轮询负载算法,不能区分服务器的差异,不能反映服务器的当前运行状态,不能做到为性能好的服务器多分配请求,另外本地计算机也会缓存已经解析的域名到IP地址的映射,这也会导致使用该DNS服务器的用户在一定时间内访问的是同一台Web服务器,从而引发Web服务器减的负载不均衡。
负载不均衡则会导致某几台服务器负荷很低,而另外几台服务器负荷确很高,处理请求的速度慢,配置高的服务器分配到的请求少,而配置低的服务器分配到的请求多。
方式三:四/七层负载均衡(重要)
介绍四/七层负载均衡之前,我们先了解一个概念,OSI(open system interconnection),叫开放式系统互联模型,这个是由国际标准化组织ISO指定的一个不基于具体机型、操作系统或公司的网络体系结构。该模型将网络通信的工作分为七层。
应用层:为应用程序提供网络服务。
表示层:对数据进行格式化、编码、加密、压缩等操作。
会话层:建立、维护、管理会话连接。
传输层:建立、维护、管理端到端的连接,常见的有TCP/UDP。
网络层:IP寻址和路由选择
数据链路层:控制网络层与物理层之间的通信。
物理层:比特流传输。
所谓四层负载均衡指的是OSI七层模型中的传输层,主要是基于IP+PORT的负载均衡
实现四层负载均衡的方式:
硬件:F5 BIG-IP、Radware等
软件:LVS、Nginx、Hayproxy等
所谓的七层负载均衡指的是在应用层,主要是基于虚拟的URL或主机IP的负载均衡
实现七层负载均衡的方式:
软件:Nginx、Hayproxy等
四层和七层负载均衡的区别
四层负载均衡数据包是在底层就进行了分发,而七层负载均衡数据包则在最顶端进行分发,所以四层负载均衡的效率比七层负载均衡的要高。
四层负载均衡不识别域名,而七层负载均衡识别域名。
处理四层和七层负载以为其实还有二层、三层负载均衡,二层是在数据链路层基于mac地址来实现负载均衡,三层是在网络层一般采用虚拟IP地址的方式实现负载均衡。
实际环境采用的模式
四层负载(LVS)+七层负载(Nginx)
2.3、Nginx七层负载均衡(重要)
Nginx要实现七层负载均衡需要用到proxy_pass代理模块配置。Nginx默认安装支持这个模块,我们不需要再做任何处理。Nginx的负载均衡是在Nginx的反向代理基础上把用户的请求根据指定的算法分发到一组【upstream虚拟服务池】。
2.4、Nginx七层负载均衡的指令
upstream指令
该指令是用来定义一组服务器,它们可以是监听不同端口的服务器,并且也可以是同时监听TCP和Unix socket的服务器。服务器可以指定不同的权重,默认为1。
语法 | upstream name {...} |
默认值 | — |
位置 | http |
server指令
该指令用来指定后端服务器的名称和一些参数,可以使用域名、IP、端口或者unix socket
语法 | server name [paramerters] |
默认值 | — |
位置 | upstream |
Nginx七层负载均衡的实现流程
服务端设置
server {listen 9001;server_name localhost;default_type text/html;location /{return 200 '<h1>192.168.200.146:9001</h1>';}
}
server {listen 9002;server_name localhost;default_type text/html;location /{return 200 '<h1>192.168.200.146:9002</h1>';}
}
server {listen 9003;server_name localhost;default_type text/html;location /{return 200 '<h1>192.168.200.146:9003</h1>';}
}
负载均衡器设置
upstream backend{server 192.168.200.146:9091;server 192.168.200.146:9092;server 192.168.200.146:9093;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
2.4、负载均衡状态
代理服务器在负责均衡调度中的状态有以下几个:
状态 | 概述 |
down | 当前的server暂时不参与负载均衡 |
backup | 预留的备份服务器 |
max_fails | 允许请求失败的次数 |
fail_timeout | 经过max_fails失败后, 服务暂停时间 |
max_conns | 限制最大的接收连接数 |
down
down:将该服务器标记为永久不可用,那么该代理服务器将不参与负载均衡。
upstream backend{server 192.168.200.146:9001 down;server 192.168.200.146:9002server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
该状态一般会对需要停机维护的服务器进行设置。
backup
backup:将该服务器标记为备份服务器,当主服务器不可用时,将用来传递请求。
upstream backend{server 192.168.200.146:9001 down;server 192.168.200.146:9002 backup;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
此时需要将9094端口的访问禁止掉来模拟下唯一能对外提供访问的服务宕机以后,backup的备份服务器就要开始对外提供服务,此时为了测试验证,我们需要使用防火墙来进行拦截。
介绍一个工具firewall-cmd,该工具是Linux提供的专门用来操作firewall的。
查询防火墙中指定的端口是否开放
firewall-cmd --query-port=9001/tcp
如何开放一个指定的端口
firewall-cmd --permanent --add-port=9002/tcp
批量添加开发端口
firewall-cmd --permanent --add-port=9001-9003/tcp
如何移除一个指定的端口
firewall-cmd --permanent --remove-port=9003/tcp
重新加载
firewall-cmd --reload
其中
--permanent表示设置为持久
--add-port表示添加指定端口
--remove-port表示移除指定端口
max_conns
max_conns=number:用来设置代理服务器同时活动链接的最大数量,默认为0,表示不限制,使用该配置可以根据后端服务器处理请求的并发量来进行设置,防止后端服务器被压垮。
max_fails和fail_timeout
max_fails=number:设置允许请求代理服务器失败的次数,默认为1。
fail_timeout=time:设置经过max_fails失败后,服务暂停的时间,默认是10秒。
upstream backend{server 192.168.200.133:9001 down;server 192.168.200.133:9002 backup;server 192.168.200.133:9003 max_fails=3 fail_timeout=15;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
2.5、负载均衡策略(重要)
介绍完Nginx负载均衡的相关指令后,我们已经能实现将用户的请求分发到不同的服务器上,那么除了采用默认的分配方式以外,我们还能采用什么样的负载算法?
Nginx的upstream支持如下六种方式的分配算法,分别是:
算法名称 | 说明 |
轮询 | 默认方式 |
weight | 权重方式 |
ip_hash | 依据ip分配方式 |
least_conn | 依据最少连接方式 |
url_hash | 依据URL分配方式 |
fair | 依据响应时间方式 |
轮询(默认策略)
是upstream模块负载均衡默认的策略。每个请求会按时间顺序逐个分配到不同的后端服务器。轮询不需要额外的配置。
upstream backend{server 192.168.200.146:9001 weight=1;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
weight加权[加权轮询]
weight=number:用来设置服务器的权重,默认为1,权重数据越大,被分配到请求的几率越大;该权重值,主要是针对实际工作环境中不同的后端服务器硬件配置进行调整的,所有此策略比较适合服务器的硬件配置差别比较大的情况。
upstream backend{server 192.168.200.146:9001 weight=10;server 192.168.200.146:9002 weight=5;server 192.168.200.146:9003 weight=3;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
ip_hash
当对后端的多台动态应用服务器做负载均衡时,ip_hash指令能够将某个客户端IP的请求通过哈希算法定位到同一台后端服务器上。这样,当来自某一个IP的用户在后端Web服务器A上登录后,在访问该站点的其他URL,能保证其访问的还是后端web服务器A。
语法 | ip_hash; |
默认值 | — |
位置 | upstream |
upstream backend{ip_hash;server 192.168.200.146:9001;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
需要额外多说一点的是使用ip_hash指令无法保证后端服务器的负载均衡,可能导致有些后端服务器接收到的请求多,有些后端服务器接收的请求少,而且设置后端服务器权重等方法将不起作用。
least_conn
最少连接,把请求转发给连接数较少的后端服务器。轮询算法是把请求平均的转发给各个后端,使它们的负载大致相同;但是,有些请求占用的时间很长,会导致其所在的后端负载较高。这种情况下,least_conn这种方式就可以达到更好的负载均衡效果。
upstream backend{least_conn;server 192.168.200.146:9001;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
此负载均衡策略适合请求处理时间长短不一造成服务器过载的情况。
url_hash
按访问url的hash结果来分配请求,使每个url定向到同一个后端服务器,要配合缓存命中来使用。同一个资源多次请求,可能会到达不同的服务器上,导致不必要的多次下载,缓存命中率不高,以及一些资源时间的浪费。而使用url_hash,可以使得同一个url(也就是同一个资源请求)会到达同一台服务器,一旦缓存住了资源,再此收到请求,就可以从缓存中读取。
upstream backend{hash &request_uri;server 192.168.200.146:9001;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
访问如下地址:
http://192.168.200.133:8083/a
http://192.168.200.133:8083/b
http://192.168.200.133:8083/c
fair
fair采用的不是内建负载均衡使用的轮换的均衡算法,而是可以根据页面大小、加载时间长短智能的进行负载均衡。那么如何使用第三方模块的fair负载均衡策略。
upstream backend{fair;server 192.168.200.146:9001;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
但是如何直接使用会报错,因为fair属于第三方模块实现的负载均衡。需要添加nginx-upstream-fair,如何添加对应的模块:
- 下载nginx-upstream-fair模块
下载地址为:https://github.com/gnosek/nginx-upstream-fair
- 将下载的文件上传到服务器并进行解压缩
unzip nginx-upstream-fair-master.zip
- 重命名资源
mv nginx-upstream-fair-master fair
- 使用./configure命令将资源添加到Nginx模块中
./configure --add-module=/root/fair
- 编译
make
编译可能会出现如下错误,ngx_http_upstream_srv_conf_t结构中缺少default_port
解决方案:
在Nginx的源码中 src/http/ngx_http_upstream.h,找到ngx_http_upstream_srv_conf_s,在模块中添加添加default_port属性
in_port_t default_port
然后再进行make.
- 更新Nginx
6.1 将sbin目录下的nginx进行备份
mv /usr/local/nginx/sbin/nginx /usr/local/nginx/sbin/nginxold
6.2 将安装目录下的objs中的nginx拷贝到sbin目录
cd objs
cp nginx /usr/local/nginx/sbin
6.3 更新Nginx
cd ../
make upgrade
- 编译测试使用Nginx
上面介绍了Nginx常用的负载均衡的策略,有人说是5种,是把轮询和加权轮询归为一种,也有人说是6种。那么在咱们以后的开发中到底使用哪种,这个需要根据实际项目的应用场景来决定的。
2.6、负载均衡案例
案例一:对所有请求实现一般轮询规则的负载均衡
upstream backend{server 192.168.200.146:9001;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
案例二:对所有请求实现加权轮询规则的负载均衡
upstream backend{server 192.168.200.146:9001 weight=7;server 192.168.200.146:9002 weight=5;server 192.168.200.146:9003 weight=3;
}
server {listen 8083;server_name localhost;location /{proxy_pass http://backend;}
}
案例三:对特定资源实现负载均衡
upstream videobackend{server 192.168.200.146:9001;server 192.168.200.146:9002;
}
upstream filebackend{server 192.168.200.146:9003;server 192.168.200.146:9004;
}
server {listen 8084;server_name localhost;location /video/ {proxy_pass http://videobackend;}location /file/ {proxy_pass http://filebackend;}
}
案例四:对不同域名实现负载均衡
upstream itcastbackend{server 192.168.200.146:9001;server 192.168.200.146:9002;
}
upstream itheimabackend{server 192.168.200.146:9003;server 192.168.200.146:9004;
}
server {listen 8085;server_name www.itcast.cn;location / {proxy_pass http://itcastbackend;}
}
server {listen 8086;server_name www.itheima.cn;location / {proxy_pass http://itheimabackend;}
}
案例五:实现带有URL重写的负载均衡
upstream backend{server 192.168.200.146:9001;server 192.168.200.146:9002;server 192.168.200.146:9003;
}
server {listen 80;server_name localhost;location /file/ {rewrite ^(/file/.*) /server/$1 last;}location / {proxy_pass http://backend;}
}
Nginx四层负载均衡
Nginx在1.9之后,增加了一个stream模块,用来实现四层协议的转发、代理、负载均衡等。stream模块的用法跟http的用法类似,允许我们配置一组TCP或者UDP等协议的监听,然后通过proxy_pass来转发我们的请求,通过upstream添加多个后端服务,实现负载均衡。
四层协议负载均衡的实现,一般都会用到LVS、HAProxy、F5等,要么很贵要么配置很麻烦,而Nginx的配置相对来说更简单,更能快速完成工作。
添加stream模块的支持
Nginx默认是没有编译这个模块的,需要使用到stream模块,那么需要在编译的时候加上--with-stream。
完成添加--with-stream的实现步骤:
》将原有/usr/local/nginx/sbin/nginx进行备份
》拷贝nginx之前的配置信息
》在nginx的安装源码进行配置指定对应模块 ./configure --with-stream
》通过make模板进行编译
》将objs下面的nginx移动到/usr/local/nginx/sbin下
》在源码目录下执行 make upgrade进行升级,这个可以实现不停机添加新模块的功能
Nginx四层负载均衡的指令
stream指令
该指令提供在其中指定流服务器指令的配置文件上下文。和http指令同级。
语法 | stream { ... } |
默认值 | — |
位置 | main |
upstream指令
该指令和http的upstream指令是类似的。
四层负载均衡的案例
需求分析
实现步骤
(1)准备Redis服务器,在一条服务器上准备三个Redis,端口分别是6379,6378
1.上传redis的安装包,redis-4.0.14.tar.gz
2.将安装包进行解压缩
tar -zxf redis-4.0.14.tar.gz
3.进入redis的安装包
cd redis-4.0.14
4.使用make和install进行编译和安装
make PREFIX=/usr/local/redis/redis01 install
5.拷贝redis配置文件redis.conf到/usr/local/redis/redis01/bin目录中
cp redis.conf /usr/local/redis/redis01/bin
6.修改redis.conf配置文件
port 6379 #redis的端口
daemonize yes #后台启动redis
7.将redis01复制一份为redis02
cd /usr/local/redis
cp -r redis01 redis02
8.将redis02文件文件夹中的redis.conf进行修改
port 6378 #redis的端口
daemonize yes #后台启动redis
9.分别启动,即可获取两个Redis.并查看
ps -ef | grep redis
使用Nginx将请求分发到不同的Redis服务器上。
(2)准备Tomcat服务器.
1.上传tomcat的安装包,apache-tomcat-8.5.56.tar.gz
2.将安装包进行解压缩
tar -zxf apache-tomcat-8.5.56.tar.gz
3.进入tomcat的bin目录
cd apache-tomcat-8.5.56/bin
./startup
nginx.conf配置
stream {upstream redisbackend {server 192.168.200.146:6379;server 192.168.200.146:6378;}upstream tomcatbackend {server 192.168.200.146:8080;}server {listen 81;proxy_pass redisbackend;}server {listen 82;proxy_pass tomcatbackend;}
}
访问测试。