人体姿态估计算法

人体姿态估计算法

  • 1 什么是人体姿态估计
  • 2 基于经典传统和基于深度学习的方法
    • 2.1 基于经典传统的人体姿态估计算法
    • 2.2 基于深度学习的人体姿态估计算法
      • OpenPose
      • AlphaPose (RMPE)
  • 3 算法应用
  • 4 Paper

人体姿态估计在现实中的应用场景很丰富,如下

动作捕捉:三维特效场景
人机交互:动作控制、手势控制
VR, AR:元宇宙数字人、抖音尬舞机、3D试衣、虚拟主播
肢体语言理解:机场、交警警察手势翻译、手语翻译
摔倒检测、健身、跳舞、球类、武术运动指导、穴位定位
步态分析、识别身份、异常动作识别

其中关键点检测是最开始的一步,本文主要对第一步的关键点检测进行一个概述,方便大家更快速的了解这里面涉及到的算法原理,属于科普文章。

1 什么是人体姿态估计

人体姿态估计(Human Pose Estimation, HPE) 是一种识别和分类人体关节的方法。本质上,它是一种捕获每个关节(手臂、头部、躯干等)的一组坐标的方法,该坐标被称为可以描述人的姿势的关键点(keypoint)。
在这里插入图片描述

人体姿势估计模型主要有三种类型: 这三种类型是随着应用逐步发展出来的,先检测关键点,类似于火柴人,进一步的检测出人的轮廓,再根据轮廓进一步的把人体进行3D重建。

  1. 基于骨架的模型(Skeleton-based model): 也称为运动学模型,该模型包括一组关键点(关节),例如脚踝、膝盖、肩膀、肘部、手腕和肢体方向,主要用于 3D 和 2D 姿势估计。

    这种灵活直观的人体模型包含人体的骨骼结构,经常用于捕捉不同身体部位之间的关系。

  2. 基于轮廓的模型(Contour-based model): 也称为平面模型,用于二维姿态估计,由身体、躯干和四肢的轮廓和粗略宽度组成。 基本上,它代表人体的外观和形状,其中身体部位用人的轮廓的边界和矩形显示。

    一个著名的例子是主动形状模型(ASM),它采用主成分分析(PCA)技术捕获整个人体图形和轮廓变形。

  3. 基于体积的模型(Volume-based model): 也称为体积模型,用于 3D 姿态估计。 它由多个流行的 3D 人体模型和由人体几何网格和形状表示的姿势组成,通常用于基于深度学习的 3D 人体姿势估计。

在这里插入图片描述

2 基于经典传统和基于深度学习的方法

2.1 基于经典传统的人体姿态估计算法

早期人体姿态估计的经典传统方法是在“图结构框架(pictorial structure framework , PSF)”内应用随机森林。 该模型的特点在于引入人体生理结构作为先验知识,人体被预先表示为多个具有空间约束的部位,且每个部分都被看作是刚体。即先识别人体身体部位,再识别姿势。
在这里插入图片描述
本质上,PSF 的目标是将人体表示为给定输入图像中每个身体部位的坐标集合; PSF 使用非线性联合回归器,理想情况下是两层随机森林回归器。

PSF优势在于当输入图像具有清晰可见的肢体时,这些模型效果很好,但是它们无法捕获和建模隐藏或从某个角度不可见的肢体。

为了克服这些问题,使用了诸如面向直方图的高斯(HOG)、轮廓、直方图等特征构建方法。 尽管使用了这些方法,但经典模型缺乏准确性、相关性和泛化能力。

2.2 基于深度学习的人体姿态估计算法

在计算机视觉任务方面,在HPE中,跟其他任务一样,深度卷积神经网络 (CNN) 的出现导致算法效果开启了腾飞模式。

  1. CNN 能够从给定的输入图像中提取特征,其精度和准确性比任何其他算法都更高;
  2. CNN泛化能力强(如果给定的隐藏层中存在足够数量的节点);
  3. 相比传统经典方法,传统方法中的特征提取、模版是人工制作的,人工设计的特征鲁棒性很差,学习到的特征复杂度有限。而且不一定是科学的,光照条件、拍摄角度等一变化,可能会导致检测失败。

Toshev等人于2014年首次使用CNN来估计人体姿势,从基于经典的方法转向基于深度学习的方法,发布的论文命名为 DeepPose: Human Pose Estimation via Deep Neural Networks.

作者还提出了另一种方法,他们实现了此类回归器的级联,以获得更精确和一致的结果。 他们认为,所提出的深度神经网络可以以整体方式对给定数据进行建模,即网络具有对隐藏姿势进行建模的能力,这对于经典方法来说是不正确的。

随着深度学习的发展,同时也带来了新的挑战,其中之一是解决多人姿态估计。深度学习在估计单人姿态方面很熟练,但是估计多人姿态时却很困难,原因是一张图像可以包含多个处于不同位置的人,随着人数的增加,相互之间的相互作用增加导致计算复杂性。计算复杂性的增加通常会导致实时推理时间的增加。

为了解决以上问题,引入了两个方法:Top Down和Bottom Up

  1. Top Down:自顶向下,即先检测每个人的框,再每个人再单独预测关键点;
  2. Bottom Up:自底向上,即先检测所有关键点,再组装成每个人
    在这里插入图片描述

OpenPose

是一种自底而上的方法,网络首先检测图像中的身体部位或关键点,然后组装成一个人。OpenPose 使用多级联的 CNN 作为主要架构,由 VGG-19 卷积网络组成,用于特征提取。

预测分支有两个:
1. 第一个分支预测每个身体部位的置信度图;
2. 第二个分支预测部位亲和力场 (Part Affinity Field, PAF),将不同部位关联起来组成一个人。

在这里插入图片描述
OpenPose pipeline如下:
在这里插入图片描述

AlphaPose (RMPE)

采用自顶而下的方法,会在预测过程中产生大量定位错误和不准确性。
在这里插入图片描述
例如,上图显示了两个边界框,红色框代表真实值,而黄色框代表预测边界框。

在分类方面,黄色边界框将被视为对人类进行分类的“正确”边界框,即使使用“正确”的边界框,也无法估计人体姿势。

AlphaPose 的作者通过两步框架解决了人体检测不完美的问题。 在此框架中,他们引入了两个网络:

对称空间变换网络(SSTN): 有助于在输入中裁剪出适当的区域,从而简化分类任务,从而获得更好的性能。
单人姿势估计器(SPPE): 用于提取和估计人体姿势。

AlphaPose 的目标是通过将 SSTN 附加到 SPPE,从不准确的边界框中提取高质量的单人区域。 该方法通过解决不变性问题来提高分类性能,同时提供稳定的框架来估计人体姿势。
在这里插入图片描述

3 算法应用

动作捕捉:三维特效场景
人机交互:动作控制、手势控制
VR, AR:元宇宙数字人、抖音尬舞机、3D试衣、虚拟主播
肢体语言理解:机场、交警警察手势翻译、手语翻译
摔倒检测、健身、跳舞、球类、武术运动指导、穴位定位
步态分析、识别身份、异常动作识别

4 Paper

把一些经典的算法paper列举在下面,供大家参考:

  1. DeepPose: Human Pose Estimation via Deep Neural Networks. CVPR, 2014 首个使用深度卷积神经网络实现人体姿态估计, regression方法
  2. Efficient Object Localization Using Convolutional Networks, CVPR, 2015 首个使用heatmap方法
  3. OpenPose 经典多人姿态估计方法, Bottom-Up
  4. RMPE: Regional Multi-person Pose Estimation, 2018 Top-Down
  5. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation Bottom-Up方法
  6. Mask R CNN 人体检测和关键点检测独立并行, 类似Top-Down方法
  7. Simple Baselines for Human Pose Estimation and Tracking,EECV, 2018
  8. HRNet: Deep High-Resolution Representation Learning for Visual Recognition
  9. RLE: Human Pose Regression with Residual Log-likelihood Estimation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193046.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android String.xml 设置加粗字体/修改字体颜色/动态设置修改文案

之前经常使用Spannable 这次主要在String.xml使用&#xff1a;<![CDATA[和]]> 效果&#xff1a; <resources><string name"str_bianse"><![CDATA[变色 <font color"#ff0000">曲项向天歌</font> 白毛浮绿水]]></st…

idea新建spring boot starter

什么是spring boot starter Spring Boot Starter 是一种 Maven 或 Gradle 依赖&#xff0c;它能够轻松地将相关库和框架集成到 Spring Boot 应用程序中。Starter 是一种对常见依赖项和设置的易于复用的封装&#xff0c;它们通常被开发人员用于创建可插拔的 Spring Boot 应用程序…

报考公务员简历(精选8篇)

想要成功进入公务员队伍&#xff0c;一份出色的个人简历是必不可少的。本文为大家精选了8篇报考公务员的个人简历案例&#xff0c;无论是应届毕业生还是有工作经验的求职者&#xff0c;都能从中汲取灵感&#xff0c;提升简历质量。找到心仪的公务员岗位。 报考公务员简历模板下…

vite脚手架,手写实现配置动态生成路由

参考文档 vite的glob-import vue路由配置基本都是重复的代码&#xff0c;每次都写一遍挺难受&#xff0c;加个页面就带配置下路由 那就利用 vite 的 文件系统处理啊 先看实现效果 1. 考虑怎么约定路由&#xff0c;即一个文件夹下&#xff0c;又有组件&#xff0c;又有页面&am…

[数据结构]HashSet与LinkedHashSet的底层原理学习心得

我们区分list和set集合的标准是三个&#xff1a;有无顺序&#xff0c;可否重复&#xff0c;有无索引。 list的答案是&#xff1a;有顺序&#xff0c;可重复&#xff0c;有索引。这也就是ArrayList和LinkedList的共性 set的答案是&#xff1a;顺序内部再区分,不可以重复&#xf…

【数电笔记】11-最小项(逻辑函数的表示方法及其转换)

目录 说明&#xff1a; 逻辑函数的建立 1. 分析逻辑问题&#xff0c;建立逻辑函数的真值表 2. 根据真值表写出逻辑式 3. 画逻辑图 逻辑函数的表示 1. 逻辑表达式的常见表示形式与转换 2. 逻辑函数的标准表达式 &#xff08;1&#xff09;最小项的定义 &#xff08;2&am…

【JavaEE】多线程(3) -- 线程等待 wait 和 notify

目录 1. wait()⽅法 2. notify()⽅法 3. notifyAll()⽅法 4. wait 和 sleep 的对⽐&#xff08;⾯试题&#xff09; 由于线程之间是抢占式执⾏的, 因此线程之间执⾏的先后顺序难以预知. 但是实际开发中有时候我们希望合理的协调多个线程之间的执⾏先后顺序. 完成这个协调⼯…

【数电笔记】18-卡诺图化简

目录 说明&#xff1a; 用卡诺图化简逻辑函数 1. 公式法化简与卡诺图化简对比 2. 化简依据 3. 化简规律 3.1 两个小方块相邻 3.2 四个小方块相邻 3.3 八个小方块相邻 4. 卡诺图化简法步骤 4.1 例1 4.2 例2 5. 画卡诺圈规则 5.1 例1 6. 特殊情况 6.1 例1 6.2 例…

【JVM】一篇通关JVM类加载与字节码技术

目录 1. 类文件结构1-1. 魔数 版本 常量池 2. 字节码指令3. 编译期处理4. 类加载阶段5. 类加载器6. 运行期优化 类加载与字节码技术 1. 类文件结构 案例 // HelloWorld 示例 public class HelloWorld {public static void main(String[] args) {System.out.println("h…

[Linux] linux防火墙

一、防火墙是什么 防火墙&#xff08;FireWall&#xff09;&#xff1a;隔离功能&#xff0c;工作在网络或主机的边缘&#xff0c;数据包的匹配规则与由一组功能定义的操作组件处理的规则相匹配&#xff0c;根据特定规则检查网络或主机的入口和出口 当要这样做时&#xff0c;基…

C++函数模板,类模板

C函数模板&#xff0c;类模板 1.函数模板1.1函数模板的概念1.2函数模板的格式1.3函数模板的原理1.4函数模板的实例化1.5模板参数的匹配原则 2.类模板2.1类模板的定义格式2.2类模板的实例化 1.函数模板 1.1函数模板的概念 在C中&#xff0c;函数模板是一种通用的函数定义&…

Linux系统-----进程通讯

前言 本期我们来学习进程间的通讯 一、信号机制 1、信号的基本概念 每个信号都对应一个正整数常量(称为signal number,即信号编号。定义在系统头文件<signal.h>中)&#xff0c;代表同一用户的诸进程之间传送事先约定的信息的类型&#xff0c;用于通知某进程发生了某异常…

Java 使用对应arthas 调试程序

1、作用 使用 arthas 可以进行如下操作 ① 抓取对应函数的耗时结构&#xff0c;然后分析对应的代码优化代码 ② 抓取对应函数的 入参、出参函数 ③ 重放对应的函数执行 ④ 查询对应程序占用结构&#xff0c;比如 cpu, jvm ⑤ 查询对应的 执行最频繁的 线程 ⑥ 打印函数…

开源软件license介绍与检测

开源License介绍 通俗来讲&#xff0c;开源许可证就是一种允许软件使用者在一定条件内按照需要自由使用和修改软件及其源代码的的法律条款。借此条款&#xff0c;软件作者可以将这些权利许可给使用者&#xff0c;并告知使用限制。这些许可条款可以由个人、商业公司或非赢利组织…

华为攻击防范简介

定义 攻击防范是一种重要的网络安全特性。它通过分析上送CPU处理的报文的内容和行为&#xff0c;判断报文是否具有攻击特性&#xff0c;并配置对具有攻击特性的报文执行一定的防范措施。 攻击防范主要分为畸形报文攻击防范、分片报文攻击防范和泛洪攻击防范。 目的 目前&…

Opencv框选黑色字体进行替换(涉及知识点:selectROI,在控制台输入字体大小,颜色,内容替换所选择的区域)

import cv2 from PIL import Image,ImageDraw,ImageFont import numpy as npimg_path ../img/ img_clean_path ../img_clean/ name xiao_ben suf .pngimg cv2.imread(img_pathnamesuf) cv2.imshow(original, img)# 选择ROI roi cv2.selectROI(windowName"original&q…

SpringAMQP入门案例——接收消息

依赖 <!--SpringAMQP起步依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> yml配置文件 自行修改 spring:rabbitmq:host: 192.168.220.130 # …

团队怎么高效制作问卷?

制作调查问卷时并不是一个人就能单独完成&#xff0c;通常情况下&#xff0c;完成一份调查问卷往往需要一个团队的成员参与&#xff0c;相互协作&#xff0c;共同完成。不过&#xff0c;多人协作经常会遇到协作壁垒&#xff0c;导致效率低下&#xff0c;那团队怎么才能高效协作…

IntelliJ IDEA 之初体验(上)

IntelliJ IDEA 是一款由 JetBrains 公司开发的强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;专注于 Java 开发&#xff0c;同时支持多种其他编程语言。本文将详细介绍 IntelliJ IDEA 的安装过程以及一些常用的基本操作。 第一步&#xff1a;下载与安装 IntelliJ…

C/C++,树算法——Ukkonen的“后缀树“构造算法的源程序

1 文本格式 // A C program to implement Ukkonens Suffix Tree Construction // And then build generalized suffix tree #include <stdio.h> #include <string.h> #include <stdlib.h> #define MAX_CHAR 256 struct SuffixTreeNode { struct Suffix…